3 resultados para Jennifer Rehage

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This volume originated in HASTAC’s first international conference, “Electronic Techtonics: Thinking at the Interface,” held at Duke University during April 19-21, 2007. “Electronic Techtonics” was the site of truly unforgettable conversations and encounters that traversed domains, disciplines, and media – conversations that explored the fluidity of technology both as interface as well as at the interface. This hardcopy version of the conference proceedings is published in conjunction with its electronic counterpart (found at www.hastac.org). Both versions exist as records of the range and depth of conversations that took place at the conference. Some of the papers in this volume are almost exact records of talks given at the conference, while others are versions that were revised and reworked some time after the conference. These papers are drawn from a variety of fields and we have not made an effort to homogenize them in any way, but have instead retained the individual format and style of each author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many molecular ecological and evolutionary studies sample wild populations at a single point in time, failing to consider that data they collect represents genetic variation from a potentially unrepresentative snapshot in time. Variation across time in genetic parameters may occur quickly in species that produce multiple generations of offspring per year. However, many studies of rapid contemporary microevolution examine phenotypic trait divergence as opposed to molecular evolutionary divergence. Here, we compare genetic diversity in wild caught populations of Drosophila persimilis and D. pseudoobscura collected 16 years apart at the same time of year and same site at four X-linked and two mitochondrial loci to assess genetic stability. We found no major changes in nucleotide diversity in either species, but we observed a drastic shift in Tajima’s D between D. pseudoobscura timepoints at one locus associated with the increased abundance of a set of related haplotypes. Our data also suggests that D. persimilis may have recently accelerated its demographic expansion. While the changes we observed were modest, this study reinforces the importance of considering potential temporal variation in genetic parameters within single populations over short evolutionary timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.

In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.

In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.

Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.