3 resultados para Italic languages and dialects

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small GTPases <italic>HRAS, <italic>NRAS and <italic>KRAS are mutated in approximately one-third of all human cancers, rendering the proteins constitutively active and oncogenic. Lung cancer is the leading cause of cancer deaths worldwide, and more than 20% of human lung cancers harbor mutations in <italic>RAS, with 98% of those occurring in the <italic>KRAS isoform. While there have been many advances in the understanding of <italic>KRAS–driven lung tumorigenesis, it remains a therapeutic challenge. To further this understanding and assess novel approaches for treatment, I have investigated two aspects of <italic>Kras–driven tumorigenesis in the lung:

(<italic>I) Despite nearly identical protein sequences, the three <italic>RAS proto-oncogenes exhibit divergent codon usage. Of the three isoforms, <italic>KRAS contains the most rare codons resulting in lower levels of KRAS protein expression relative to <italic>HRAS and <italic>NRAS. To determine the consequences of rare codon bias during <italic>de <italic>novo tumorigenesis, we created a knock-in <italic>Krasex3op mouse in which synonymous mutations in exon 3 converted codons from rare to common. These mice had reduced tumor burden and fewer oncogenic mutations in the <italic>Krasex3op allele following carcinogen exposure. The reduction in tumorigenesis appeared to be a product of rare codons affecting both the oncogenic and non–oncogenic alleles. Converting rare codons to common codons yielded a more potent oncogenic allele that promoted growth arrest and enhanced tumor suppression by the non-oncogenic allele. Thus, rare codons play an integral role in <italic>Kras tumorigenesis.

(<italic>II) Lung cancer patients exhale higher levels of NO and <italic>iNOS-/- mice are resistant to chemically induced lung tumorigenesis. I hypothesize that NO promotes <italic>Kras–driven lung adenocarcinoma, and NOS inhibition may decrease <italic>Kras–driven lung tumorigenesis. To test this hypothesis, I assessed efficacy of the NOS inhibitor L–NAME in a genetically engineered mouse model of <italic>Kras-driven lung adenocarcinoma. Adenoviral Cre recombinase was delivered into the lungs intranasally, resulting in expression of oncogenic <italic>KrasG12D and dominant-negative <italic>Trp53R172H in lung epithelial cells. L–NAME treatment was provided in the water and continued until survival endpoints. In this model, L–NAME treatment decreased tumor growth and prolonged survival. These data establish a potential clinical role for NOS inhibition in lung cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant <italic>Arabidopsis thalianaitalic>, the red- and far-red light-sensing phytochromes (phys) are arguably the best studied, but the earliest events in the phy signaling pathway remain poorly understood. One of the earliest phy signaling events is the translocation of photoactivated phys from the cytoplasm to the nucleus, where they localize to subnuclear foci termed photobodies; in continuous light, photobody localization correlates closely with the light-dependent inhibition of embryonic stem growth. Despite a growing body of evidence supporting the biological significance of photobodies in light signaling, photobodies have also been shown to be dispensable for seedling growth inhibition in continuous light, so their physiological importance remains controversial; additionally, the molecular components that are required for phy localization to photobodies are largely unknown. The overall goal of my dissertation research was to gain insight into the early steps of phy signaling by further defining the role of photobodies in this process and identifying additional intragenic and extragenic requirements for phy localization to photobodies.

Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.

Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (<italic>PBGitalic>), and one in which it cannot (<italic>NGBitalic>). Despite these differences in photobody morphology, both lines are capable of transducing light signals and inhibiting seedling growth in continuous light. After the transition from red light to darkness, the PBG line was able to repress seedling growth, as well as the accumulation of the growth-promoting, light-labile transcription factor PHYTOCHROME INTERACTING FACTOR 3 (PIF3), for eighteen hours, and this correlated perfectly with the presence of photobodies. Reducing the amount of active phy by either reducing the light intensity or adding a phy-inactivating far-red pulse prior to darkness led to faster accumulation of PIF3 and earlier seedling growth. In contrast, the <italic>NGBitalic> line accumulated PIF3 even in the light, and seedling growth was only repressed for six hours; this behavior was similar in <italic>NGBitalic> regardless of the light treatment. These results suggest that photobodies are required for the degradation of PIF3 and for the prolonged stabilization of active phy in darkness. They also support the hypothesis that photobody localization of phys could serve as an instructive cue during the light-to-dark transition, thereby fine-tuning light-dependent responses in darkness.

In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR); <italic>hmritalic> mutants do not form large photobodies, and they are tall and albino in the light. To identify other components in the HMR-mediated branch of the phy signaling pathway, I performed a forward genetic screen for suppressors of a weak <italic>hmritalic> allele. Surprisingly, the first three mutants isolated from the screen were alleles of the same novel gene, <italic>SON OF HEMERAitalic> (<italic>SOHitalic>). The <italic>sohitalic> mutations rescue all of the phenotypes associated with the weak <italic>hmritalic> allele, and they do so in an allele-specific manner, suggesting a direct interaction between SOH and HMR. Null <italic>sohitalic> alleles, which were isolated in an independent, tall, albino screen, are defective in photobody localization, demonstrating that SOH is an extragenic regulator of phy localization to photobodies that works in the same genetic pathway as HMR.

In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene, <italic>SON OF HEMERAitalic>, whose product is necessary for phy localization to photobodies in the light, thereby isolating a new extragenic determinant of photobody localization. These results are among the first to focus exclusively on one of the earliest cellular responses to light - photobody localization of phys - and they promise to open up new avenues into the study of a poorly understood facet of the phy signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation uncovers and analyzes the complicated history of the devil’s pact in literature from approximately 1330 to 2015, focusing primarily on texts written in German and Dutch. That the tale of the pact with the devil (the so-called Faustian bargain) is one of the most durable and pliable literary themes is undeniable. Yet for too long, the success of Johann Wolfgang von Goethe’s Faust I (1808) decisively shaped scholarship on early devil’s pact tales, leading to a misreading of the texts with Goethe’s concerns being projected onto the earliest manifestations. But Goethe’s Faust really only borrows from the original Faust his name; the two characters could not be more different. Furthermore, Faustus was not the only early pact-maker character and his tale was neither limited to the German language nor to the Protestant faith. Among others, tales written in Dutch about a female, Catholic, latemedieval pact-maker, Mariken van Nieumeghen (1515), illustrate this. This dissertation seeks to redeem the early modern Faustus texts from its misreading and to broaden the scholarship on the literature of the devil’s pact by considering the Mariken and Faust traditions together.

The first chapter outlines the beginnings of pact literature as a Catholic phenomenon, considering the tales of Theophilus and Pope Joan alongside Mariken of Nijmegen. The second chapter turns to the original Faust tale, the Historia von D. Johann Fausten (1587), best read as a Lutheran response to the Catholic pact literature in the wake of the Reformation. In the third chapter, this dissertation offers a new, united reading of the early modern Faust tradition. The fourth and fifth chapters trace the literary preoccupation with the pacts of both Mariken and Faustus from the late early modern to the present.

The dissertation traces the evolution of these two bodies of literature and provides an in-depth analysis and comparison of the two that has not been done before. It argues for a more global literary scholarship that considers texts across multiple languages and one that takes into consideration the rich body of material of the pact tradition.