10 resultados para Isotropic and Anisotropic models
em Duke University
Resumo:
Scholarly publishing, and scholarly communication more generally, are based on patterns established over many decades and even centuries. Some of these patterns are clearly valuable and intimately related to core values of the academy, but others were based on the exigencies of the past, and new opportunities have brought into question whether it makes sense to persist in supporting old models. New technologies and new publishing models raise the question of how we should fund and operate scholarly publishing and scholarly communication in the future, moving away from a scarcity model based on the exchange of physical goods that restricts access to scholarly literature unless a market-based exchange takes place. This essay describes emerging models that attempt to shift scholarly communication to a more open-access and mission-based approach and that try to retain control of scholarship by academics and the institutions and scholarly societies that support them. It explores changing practices for funding scholarly journals and changing services provided by academic libraries, changes instituted with the end goal of providing more access to more readers, stimulating new scholarship, and removing inefficiencies from a system ready for change. © 2014 by the American Anthropological Association.
Resumo:
Magnetic resonance imaging is a research and clinical tool that has been applied in a wide variety of sciences. One area of magnetic resonance imaging that has exhibited terrific promise and growth in the past decade is magnetic susceptibility imaging. Imaging tissue susceptibility provides insight into the microstructural organization and chemical properties of biological tissues, but this image contrast is not well understood. The purpose of this work is to develop effective approaches to image, assess, and model the mechanisms that generate both isotropic and anisotropic magnetic susceptibility contrast in biological tissues, including myocardium and central nervous system white matter.
This document contains the first report of MRI-measured susceptibility anisotropy in myocardium. Intact mouse heart specimens were scanned using MRI at 9.4 T to ascertain both the magnetic susceptibility and myofiber orientation of the tissue. The susceptibility anisotropy of myocardium was observed and measured by relating the apparent tissue susceptibility as a function of the myofiber angle with respect to the applied magnetic field. A multi-filament model of myocardial tissue revealed that the diamagnetically anisotropy α-helix peptide bonds in myofilament proteins are capable of producing bulk susceptibility anisotropy on a scale measurable by MRI, and are potentially the chief sources of the experimentally observed anisotropy.
The growing use of paramagnetic contrast agents in magnetic susceptibility imaging motivated a series of investigations regarding the effect of these exogenous agents on susceptibility imaging in the brain, heart, and kidney. In each of these organs, gadolinium increases susceptibility contrast and anisotropy, though the enhancements depend on the tissue type, compartmentalization of contrast agent, and complex multi-pool relaxation. In the brain, the introduction of paramagnetic contrast agents actually makes white matter tissue regions appear more diamagnetic relative to the reference susceptibility. Gadolinium-enhanced MRI yields tensor-valued susceptibility images with eigenvectors that more accurately reflect the underlying tissue orientation.
Despite the boost gadolinium provides, tensor-valued susceptibility image reconstruction is prone to image artifacts. A novel algorithm was developed to mitigate these artifacts by incorporating orientation-dependent tissue relaxation information into susceptibility tensor estimation. The technique was verified using a numerical phantom simulation, and improves susceptibility-based tractography in the brain, kidney, and heart. This work represents the first successful application of susceptibility-based tractography to a whole, intact heart.
The knowledge and tools developed throughout the course of this research were then applied to studying mouse models of Alzheimer’s disease in vivo, and studying hypertrophic human myocardium specimens ex vivo. Though a preliminary study using contrast-enhanced quantitative susceptibility mapping has revealed diamagnetic amyloid plaques associated with Alzheimer’s disease in the mouse brain ex vivo, non-contrast susceptibility imaging was unable to precisely identify these plaques in vivo. Susceptibility tensor imaging of human myocardium specimens at 9.4 T shows that susceptibility anisotropy is larger and mean susceptibility is more diamagnetic in hypertrophic tissue than in normal tissue. These findings support the hypothesis that myofilament proteins are a source of susceptibility contrast and anisotropy in myocardium. This collection of preclinical studies provides new tools and context for analyzing tissue structure, chemistry, and health in a variety of organs throughout the body.
Resumo:
Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.
Resumo:
The intensity and valence of 30 emotion terms, 30 events typical of those emotions, and 30 autobiographical memories cued by those emotions were each rated by different groups of 40 undergraduates. A vector model gave a consistently better account of the data than a circumplex model, both overall and in the absence of high-intensity, neutral valence stimuli. The Positive Activation - Negative Activation (PANA) model could be tested at high levels of activation, where it is identical to the vector model. The results replicated when ratings of arousal were used instead of ratings of intensity for the events and autobiographical memories. A reanalysis of word norms gave further support for the vector and PANA models by demonstrating that neutral valence, high-arousal ratings resulted from the averaging of individual positive and negative valence ratings. Thus, compared to a circumplex model, vector and PANA models provided overall better fits.
Resumo:
The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.
To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.
The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.
Resumo:
OBJECTIVE: To examine the associations between attention-deficit/hyperactivity disorder (ADHD) symptoms, obesity and hypertension in young adults in a large population-based cohort. DESIGN, SETTING AND PARTICIPANTS: The study population consisted of 15,197 respondents from the National Longitudinal Study of Adolescent Health, a nationally representative sample of adolescents followed from 1995 to 2009 in the United States. Multinomial logistic and logistic models examined the odds of overweight, obesity and hypertension in adulthood in relation to retrospectively reported ADHD symptoms. Latent curve modeling was used to assess the association between symptoms and naturally occurring changes in body mass index (BMI) from adolescence to adulthood. RESULTS: Linear association was identified between the number of inattentive (IN) and hyperactive/impulsive (HI) symptoms and waist circumference, BMI, diastolic blood pressure and systolic blood pressure (all P-values for trend <0.05). Controlling for demographic variables, physical activity, alcohol use, smoking and depressive symptoms, those with three or more HI or IN symptoms had the highest odds of obesity (HI 3+, odds ratio (OR)=1.50, 95% confidence interval (CI) = 1.22-2.83; IN 3+, OR = 1.21, 95% CI = 1.02-1.44) compared with those with no HI or IN symptoms. HI symptoms at the 3+ level were significantly associated with a higher OR of hypertension (HI 3+, OR = 1.24, 95% CI = 1.01-1.51; HI continuous, OR = 1.04, 95% CI = 1.00-1.09), but associations were nonsignificant when models were adjusted for BMI. Latent growth modeling results indicated that compared with those reporting no HI or IN symptoms, those reporting 3 or more symptoms had higher initial levels of BMI during adolescence. Only HI symptoms were associated with change in BMI. CONCLUSION: Self-reported ADHD symptoms were associated with adult BMI and change in BMI from adolescence to adulthood, providing further evidence of a link between ADHD symptoms and obesity.
Resumo:
The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.
The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.
The work presented here includes three ex vivo studies and two in vivo studies:
1) Magnetic resonance histology of age-related nephropathy in sprague dawley.
2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.
3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.
4) 4D MRI of renal function in the developing mouse.
5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.
Resumo:
CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.
Resumo:
BACKGROUND: Anticoagulation can reduce quality of life, and different models of anticoagulation management might have different impacts on satisfaction with this component of medical care. Yet, to our knowledge, there are no scales measuring quality of life and satisfaction with anticoagulation that can be generalized across different models of anticoagulation management. We describe the development and preliminary validation of such an instrument - the Duke Anticoagulation Satisfaction Scale (DASS). METHODS: The DASS is a 25-item scale addressing the (a) negative impacts of anticoagulation (limitations, hassles and burdens); and (b) positive impacts of anticoagulation (confidence, reassurance, satisfaction). Each item has 7 possible responses. The DASS was administered to 262 patients currently receiving oral anticoagulation. Scales measuring generic quality of life, satisfaction with medical care, and tendency to provide socially desirable responses were also administered. Statistical analysis included assessment of item variability, internal consistency (Cronbach's alpha), scale structure (factor analysis), and correlations between the DASS and demographic variables, clinical characteristics, and scores on the above scales. A follow-up study of 105 additional patients assessed test-retest reliability. RESULTS: 220 subjects answered all items. Ceiling and floor effects were modest, and 25 of the 27 proposed items grouped into 2 factors (positive impacts, negative impacts, this latter factor being potentially subdivided into limitations versus hassles and burdens). Each factor had a high degree of internal consistency (Cronbach's alpha 0.78-0.91). The limitations and hassles factors consistently correlated with the SF-36 scales measuring generic quality of life, while the positive psychological impact scale correlated with age and time on anticoagulation. The intra-class correlation coefficient for test-retest reliability was 0.80. CONCLUSIONS: The DASS has demonstrated reasonable psychometric properties to date. Further validation is ongoing. To the degree that dissatisfaction with anticoagulation leads to decreased adherence, poorer INR control, and poor clinical outcomes, the DASS has the potential to help identify reasons for dissatisfaction (and positive satisfaction), and thus help to develop interventions to break this cycle. As an instrument designed to be applicable across multiple models of anticoagulation management, the DASS could be crucial in the scientific comparison between those models of care.
Resumo:
BACKGROUND: Singapore's population, as that of many other countries, is aging; this is likely to lead to an increase in eye diseases and the demand for eye care. Since ophthalmologist training is long and expensive, early planning is essential. This paper forecasts workforce and training requirements for Singapore up to the year 2040 under several plausible future scenarios. METHODS: The Singapore Eye Care Workforce Model was created as a continuous time compartment model with explicit workforce stocks using system dynamics. The model has three modules: prevalence of eye disease, demand, and workforce requirements. The model is used to simulate the prevalence of eye diseases, patient visits, and workforce requirements for the public sector under different scenarios in order to determine training requirements. RESULTS: Four scenarios were constructed. Under the baseline business-as-usual scenario, the required number of ophthalmologists is projected to increase by 117% from 2015 to 2040. Under the current policy scenario (assuming an increase of service uptake due to increased awareness, availability, and accessibility of eye care services), the increase will be 175%, while under the new model of care scenario (considering the additional effect of providing some services by non-ophthalmologists) the increase will only be 150%. The moderated workload scenario (assuming in addition a reduction of the clinical workload) projects an increase in the required number of ophthalmologists of 192% by 2040. Considering the uncertainties in the projected demand for eye care services, under the business-as-usual scenario, a residency intake of 8-22 residents per year is required, 17-21 under the current policy scenario, 14-18 under the new model of care scenario, and, under the moderated workload scenario, an intake of 18-23 residents per year is required. CONCLUSIONS: The results show that under all scenarios considered, Singapore's aging and growing population will result in an almost doubling of the number of Singaporeans with eye conditions, a significant increase in public sector eye care demand and, consequently, a greater requirement for ophthalmologists.