12 resultados para Intrinsic reward

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR) has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans. Methodology/Principal Findings: In contrast to monkeys with two copies of the long allele (L/L), monkeys with one copy of the short allele of this gene (S/L) spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a "pay-per-view" task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos. Conclusions/Significance: These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike. © 2009 Watson et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scholarly publishing, and scholarly communication more generally, are based on patterns established over many decades and even centuries. Some of these patterns are clearly valuable and intimately related to core values of the academy, but others were based on the exigencies of the past, and new opportunities have brought into question whether it makes sense to persist in supporting old models. New technologies and new publishing models raise the question of how we should fund and operate scholarly publishing and scholarly communication in the future, moving away from a scarcity model based on the exchange of physical goods that restricts access to scholarly literature unless a market-based exchange takes place. This essay describes emerging models that attempt to shift scholarly communication to a more open-access and mission-based approach and that try to retain control of scholarship by academics and the institutions and scholarly societies that support them. It explores changing practices for funding scholarly journals and changing services provided by academic libraries, changes instituted with the end goal of providing more access to more readers, stimulating new scholarship, and removing inefficiencies from a system ready for change. © 2014 by the American Anthropological Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early life stress (ELS) is strongly associated with negative outcomes in adulthood, including reduced motivation and increased negative mood. The mechanisms mediating these relations, however, are poorly understood. We examined the relation between exposure to ELS and reward-related brain activity, which is known to predict motivation and mood, at age 26, in a sample followed since kindergarten with annual assessments. Using functional neuroimaging, we assayed individual differences in the activity of the ventral striatum (VS) during the processing of monetary rewards associated with a simple card-guessing task, in a sample of 72 male participants. We examined associations between a cumulative measure of ELS exposure and VS activity in adulthood. We found that greater levels of cumulative stress during childhood and adolescence predicted lower reward-related VS activity in adulthood. Extending this general developmental pattern, we found that exposure to stress early in development (between kindergarten and grade 3) was significantly associated with variability in adult VS activity. Our results provide an important demonstration that cumulative life stress, especially during this childhood period, is associated with blunted reward-related VS activity in adulthood. These differences suggest neurobiological pathways through which a history of ELS may contribute to reduced motivation and increased negative mood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal heterothermy—an orchestrated set of extreme physiological responses—is directly responsible for the over-winter survival of many mammalian groups living in seasonal environments. Historically, it was thought that the use of seasonal heterothermy (i.e. daily torpor and hibernation) was restricted to cold-adapted species; it is now known that such thermoregulatory strategies are used by more species than previously appreciated, including many tropical species. The dwarf and mouse lemurs (family Cheirogaleidae) are among the few primates known to use seasonal heterothermy to avoid Madagascar’s harsh and unpredictable environments. These primates provide an ideal study system for investigating a common mechanism of mammalian seasonal heterothermy. The overarching theme of this dissertation is to understand both the intrinsic and extrinsic drivers of heterothermy in three species of the family Cheirogaleidae. By using transcriptome sequencing to characterize gene expression in both captive and natural settings, we identify unique patterns of differential gene expression that are correlated with extreme changes in physiology in two species of dwarf lemurs: C. medius under captive conditions at the Duke Lemur Center and C. crossleyi studied under field conditions in Madagascar. Genes that are differentially expressed appear to be critical for maintaining the health of these animals when they undergo prolonged periods of metabolic depression concurrent with the hibernation phenotype. Further, a comparative analysis of previously studied mammalian heterotherms identifies shared genetic mechanisms underlying the hibernation phenotype across the phylogeny of mammals. Lastly, conducting a diet manipulation study with a captive colony of mouse lemurs (Microcebus murinus) at the Duke Lemur Center, we investigated the degree to which dietary effects influence torpor patterns. We find that tropical primate heterotherms may be exempt from the traditional paradigms governing cold-adapted heterothermy, having evolved different dietary strategies to tolerate circadian changes in body temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53(fl/fl) mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP- and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Efficient effort expenditure to obtain rewards is critical for optimal goal-directed behavior and learning. Clinical observation suggests that individuals with autism spectrum disorders (ASD) may show dysregulated reward-based effort expenditure, but no behavioral study to date has assessed effort-based decision-making in ASD. METHODS: The current study compared a group of adults with ASD to a group of typically developing adults on the Effort Expenditure for Rewards Task (EEfRT), a behavioral measure of effort-based decision-making. In this task, participants were provided with the probability of receiving a monetary reward on a particular trial and asked to choose between either an "easy task" (less motoric effort) for a small, stable reward or a "hard task" (greater motoric effort) for a variable but consistently larger reward. RESULTS: Participants with ASD chose the hard task more frequently than did the control group, yet were less influenced by differences in reward value and probability than the control group. Additionally, effort-based decision-making was related to repetitive behavior symptoms across both groups. CONCLUSIONS: These results suggest that individuals with ASD may be more willing to expend effort to obtain a monetary reward regardless of the reward contingencies. More broadly, results suggest that behavioral choices may be less influenced by information about reward contingencies in individuals with ASD. This atypical pattern of effort-based decision-making may be relevant for understanding the heightened reward motivation for circumscribed interests in ASD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.