10 resultados para Intervertebral disc degeneration

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro. OBJECTIVE: To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro. SUMMARY OF BACKGROUND DATA: TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown. METHODS: IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells. RESULTS: Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively. CONCLUSION: Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration - a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient's own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24(+) iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24(+) cell fraction via real time RT-PCR. CD24(+) iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24(+) fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20-3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lumbar disc herniation has a prevalence of up to 58% in the athletic population. Lumbar discectomy is a common surgical procedure to alleviate pain and disability in athletes. We systematically reviewed the current clinical evidence regarding athlete return to sport (RTS) following lumbar discectomy compared to conservative treatment. METHODS: A computer-assisted literature search of MEDLINE, CINAHL, Web of Science, PEDro, OVID and PubMed databases (from inception to August 2015) was utilised using keywords related to lumbar disc herniation and surgery. The design of this systematic review was developed using the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Methodological quality of individual studies was assessed using the Downs and Black scale (0-16 points). RESULTS: The search strategy revealed 14 articles. Downs and Black quality scores were generally low with no articles in this review earning a high-quality rating, only 5 articles earning a moderate quality rating and 9 of the 14 articles earning a low-quality rating. The pooled RTS for surgical intervention of all included studies was 81% (95% CI 76% to 86%) with significant heterogeneity (I(2)=63.4%, p<0.001) although pooled estimates report only 59% RTS at same level. Pooled analysis showed no difference in RTS rate between surgical (84% (95% CI 77% to 90%)) and conservative intervention (76% (95% CI 56% to 92%); p=0.33). CONCLUSIONS: Studies comparing surgical versus conservative treatment found no significant difference between groups regarding RTS. Not all athletes that RTS return at the level of participation they performed at prior to surgery. Owing to the heterogeneity and low methodological quality of included studies, rates of RTS cannot be accurately determined.