2 resultados para Interstitial oxygen

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intersection of the amyloid cascade hypothesis and the implication of metal ions in Alzheimer's disease progression has sparked an interest in using metal-binding compounds as potential therapeutic agents. In the present work, we describe a prochelator SWH that is enzymatically activated by beta-secretase to produce a high affinity copper chelator CP. Because beta-secretase is responsible for the amyloidogenic processing of the amyloid precursor protein, this prochelator strategy imparts disease specificity toward copper chelation not possible with general metal chelators. Furthermore, once activated, CP efficiently sequesters copper from amyloid-beta, prevents and disassembles copper-induced amyloid-beta aggregation, and diminishes copper-promoted reactive oxygen species formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acellular dermal matrices (ADM) are commonly used in reconstructive procedures and rely on host cell invasion to become incorporated into host tissues. We investigated different approaches to adipose-derived stem cells (ASCs) engraftment into ADM to enhance this process. Lewis rat adipose-derived stem cells were isolated and grafted (3.0 × 10(5) cells) to porcine ADM disks (1.5 mm thick × 6 mm diameter) using either passive onlay or interstitial injection seeding techniques. Following incubation, seeding efficiency and seeded cell viability were measured in vitro. In addition, Eighteen Lewis rats underwent subcutaneous placement of ADM disk either as control or seeded with PKH67 labeled ASCs. ADM disks were seeded with ASCs using either onlay or injection techniques. On day 7 and or 14, ADM disks were harvested and analyzed for host cell infiltration. Onlay and injection techniques resulted in unique seeding patterns; however cell seeding efficiency and cell viability were similar. In-vivo studies showed significantly increased host cell infiltration towards the ASCs foci following injection seeding in comparison to control group (p < 0.05). Moreover, regional endothelial cell invasion was significantly greater in ASCs injected grafts in comparison to onlay seeding (p < 0.05). ADM can successfully be engrafted with ASCs. Interstitial engraftment of ASCs into ADM via injection enhances regional infiltration of host cells and angiogenesis, whereas onlay seeding showed relatively broad and superficial cell infiltration. These findings may be applied to improve the incorporation of avascular engineered constructs.