3 resultados para Intended text
em Duke University
Resumo:
BACKGROUND: The ability to write clearly and effectively is of central importance to the scientific enterprise. Encouraged by the success of simulation environments in other biomedical sciences, we developed WriteSim TCExam, an open-source, Web-based, textual simulation environment for teaching effective writing techniques to novice researchers. We shortlisted and modified an existing open source application - TCExam to serve as a textual simulation environment. After testing usability internally in our team, we conducted formal field usability studies with novice researchers. These were followed by formal surveys with researchers fitting the role of administrators and users (novice researchers) RESULTS: The development process was guided by feedback from usability tests within our research team. Online surveys and formal studies, involving members of the Research on Research group and selected novice researchers, show that the application is user-friendly. Additionally it has been used to train 25 novice researchers in scientific writing to date and has generated encouraging results. CONCLUSION: WriteSim TCExam is the first Web-based, open-source textual simulation environment designed to complement traditional scientific writing instruction. While initial reviews by students and educators have been positive, a formal study is needed to measure its benefits in comparison to standard instructional methods.
Resumo:
A tree-based dictionary learning model is developed for joint analysis of imagery and associated text. The dictionary learning may be applied directly to the imagery from patches, or to general feature vectors extracted from patches or superpixels (using any existing method for image feature extraction). Each image is associated with a path through the tree (from root to a leaf), and each of the multiple patches in a given image is associated with one node in that path. Nodes near the tree root are shared between multiple paths, representing image characteristics that are common among different types of images. Moving toward the leaves, nodes become specialized, representing details in image classes. If available, words (text) are also jointly modeled, with a path-dependent probability over words. The tree structure is inferred via a nested Dirichlet process, and a retrospective stick-breaking sampler is used to infer the tree depth and width.
Resumo:
This is the second installment of a three-part project to publish a group of ten Ptolemaic papyri purchased by Yale’s Beinecke Library in 1998 (acquisition “1998b”), which came to the Beinecke as three hard wads that were apparently the stuffing from the stomach cavity of a mummified animal. This article publishes: (1) P.CtYBR inv. 5019, a fragment of line ends in iambic tetrameter catalectic meter from an unknown comedy; the format suggests that this is a further example of certain type of Ptolemaic writing exercise. (2) P.CtYBR inv. 5043, a fragmentary grammatical text of uncertain import.