2 resultados para Intelligent transportation systems

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

© 2005-2012 IEEE.Within industrial automation systems, three-dimensional (3-D) vision provides very useful feedback information in autonomous operation of various manufacturing equipment (e.g., industrial robots, material handling devices, assembly systems, and machine tools). The hardware performance in contemporary 3-D scanning devices is suitable for online utilization. However, the bottleneck is the lack of real-time algorithms for recognition of geometric primitives (e.g., planes and natural quadrics) from a scanned point cloud. One of the most important and the most frequent geometric primitive in various engineering tasks is plane. In this paper, we propose a new fast one-pass algorithm for recognition (segmentation and fitting) of planar segments from a point cloud. To effectively segment planar regions, we exploit the orthonormality of certain wavelets to polynomial function, as well as their sensitivity to abrupt changes. After segmentation of planar regions, we estimate the parameters of corresponding planes using standard fitting procedures. For point cloud structuring, a z-buffer algorithm with mesh triangles representation in barycentric coordinates is employed. The proposed recognition method is tested and experimentally validated in several real-world case studies.