1 resultado para Integration, Integrated Marketing Communications, Marketing Communications
em Duke University
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (61)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (88)
- Aston University Research Archive (10)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (51)
- CentAUR: Central Archive University of Reading - UK (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (17)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- Duke University (1)
- E-Research at Tennessee State University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (7)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (103)
- Queensland University of Technology - ePrints Archive (394)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Metodista de São Paulo (21)
- Universidade Técnica de Lisboa (3)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (5)
- University of Michigan (2)
- University of Queensland eSpace - Australia (7)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
Resumo:
We study the problem of supervised linear dimensionality reduction, taking an information-theoretic viewpoint. The linear projection matrix is designed by maximizing the mutual information between the projected signal and the class label. By harnessing a recent theoretical result on the gradient of mutual information, the above optimization problem can be solved directly using gradient descent, without requiring simplification of the objective function. Theoretical analysis and empirical comparison are made between the proposed method and two closely related methods, and comparisons are also made with a method in which Rényi entropy is used to define the mutual information (in this case the gradient may be computed simply, under a special parameter setting). Relative to these alternative approaches, the proposed method achieves promising results on real datasets. Copyright 2012 by the author(s)/owner(s).