2 resultados para Initiative to promote healthy eating
em Duke University
Resumo:
Although people frequently pursue multiple goals simultaneously, these goals often conflict with each other. For instance, consumers may have both a healthy eating goal and a goal to have an enjoyable eating experience. In this dissertation, I focus on two sources of enjoyment in eating experiences that may conflict with healthy eating: consuming tasty food (Essay 1) and affiliating with indulging dining companions (Essay 2). In both essays, I examine solutions and strategies that decrease the conflict between healthy eating and these aspects of enjoyment in the eating experience, thereby enabling consumers to resolve such goal conflicts.
Essay 1 focuses on the well-established conflict between having healthy food and having tasty food and introduces a novel product offering (“vice-virtue bundles”) that can help consumers simultaneously address both health and taste goals. Through several experiments, I demonstrate that consumers often choose vice-virtue bundles with small proportions (¼) of vice and that they view such bundles as healthier than but equally tasty as bundles with larger vice proportions, indicating that “healthier” does not always have to equal “less tasty.”
Essay 2 focuses on a conflict between healthy eating and affiliation with indulging dining companions. The first set of experiments provides evidence of this conflict and examine why it arises (Studies 1 to 3). Based on this conflict’s origins, the second set of experiments tests strategies that consumers can use to decrease the conflict between healthy eating and affiliation with an indulging dining companion (Studies 4 and 5), such that they can make healthy food choices while still being liked by an indulging dining companion. Thus, Essay 2 broadens the existing picture of goals that conflict with the healthy eating goal and, together with Essay 1, identifies solutions to such goal conflicts.
Resumo:
Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.