2 resultados para Information Visualization Environment

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change is thought to be one of the most pressing environmental problems facing humanity. However, due in part to failures in political communication and how the issue has been historically defined in American politics, discussions of climate change remain gridlocked and polarized. In this dissertation, I explore how climate change has been historically constructed as a political issue, how conflicts between climate advocates and skeptics have been communicated, and what effects polarization has had on political communication, particularly on the communication of climate change to skeptical audiences. I use a variety of methodological tools to consider these questions, including evolutionary frame analysis, which uses textual data to show how issues are framed and constructed over time; Kullback-Leibler divergence content analysis, which allows for comparison of advocate and skeptical framing over time; and experimental framing methods to test how audiences react to and process different presentations of climate change. I identify six major portrayals of climate change from 1988 to 2012, but find that no single construction of the issue has dominated the public discourse defining the problem. In addition, the construction of climate change may be associated with changes in public political sentiment, such as greater pessimism about climate action when the electorate becomes more conservative. As the issue of climate change has become more polarized in American politics, one proposed causal pathway for the observed polarization is that advocate and skeptic framing of climate change focuses on different facets of the issue and ignores rival arguments, a practice known as “talking past.” However, I find no evidence of increased talking past in 25 years of popular newsmedia reporting on the issue, suggesting both that talking past has not driven public polarization or that polarization is occurring in venues outside of the mainstream public discourse, such as blogs. To examine how polarization affects political communication on climate change, I test the cognitive processing of a variety of messages and sources that promote action against climate change among Republican individuals. Rather than identifying frames that are powerful enough to overcome polarization, I find that Republicans exhibit telltale signs of motivated skepticism on the issue, that is, they reject framing that runs counter to their party line and political identity. This result suggests that polarization constrains political communication on polarized issues, overshadowing traditional message and source effects of framing and increasing the difficulty communicators experience in reaching skeptical audiences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the wisdom of crowds---combining many individual forecasts to obtain an aggregate estimate---can be an effective technique for improving forecast accuracy. When individual forecasts are drawn from independent and identical information sources, a simple average provides the optimal crowd forecast. However, correlated forecast errors greatly limit the ability of the wisdom of crowds to recover the truth. In practice, this dependence often emerges because information is shared: forecasters may to a large extent draw on the same data when formulating their responses.

To address this problem, I propose an elicitation procedure in which each respondent is asked to provide both their own best forecast and a guess of the average forecast that will be given by all other respondents. I study optimal responses in a stylized information setting and develop an aggregation method, called pivoting, which separates individual forecasts into shared and private information and then recombines these results in the optimal manner. I develop a tailored pivoting procedure for each of three information models, and introduce a simple and robust variant that outperforms the simple average across a variety of settings.

In three experiments, I investigate the method and the accuracy of the crowd forecasts. In the first study, I vary the shared and private information in a controlled environment, while the latter two studies examine forecasts in real-world contexts. Overall, the data suggest that a simple minimal pivoting procedure provides an effective aggregation technique that can significantly outperform the crowd average.