7 resultados para Indoor air quality
em Duke University
Resumo:
Conventional hedonic techniques for estimating the value of local amenities rely on the assumption that households move freely among locations. We show that when moving is costly, the variation in housing prices and wages across locations may no longer reflect the value of differences in local amenities. We develop an alternative discrete-choice approach that models the household location decision directly, and we apply it to the case of air quality in US metro areas in 1990 and 2000. Because air pollution is likely to be correlated with unobservable local characteristics such as economic activity, we instrument for air quality using the contribution of distant sources to local pollution-excluding emissions from local sources, which are most likely to be correlated with local conditions. Our model yields an estimated elasticity of willingness to pay with respect to air quality of 0.34-0.42. These estimates imply that the median household would pay $149-$185 (in constant 1982-1984 dollars) for a one-unit reduction in average ambient concentrations of particulate matter. These estimates are three times greater than the marginal willingness to pay estimated by a conventional hedonic model using the same data. Our results are robust to a range of covariates, instrumenting strategies, and functional form assumptions. The findings also confirm the importance of instrumenting for local air pollution. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Twelve months of aerosol size distributions from 3 to 560nm, measured using scanning mobility particle sizers are presented with an emphasis on average number, surface, and volume distributions, and seasonal and diurnal variation. The measurements were made at the main sampling site of the Pittsburgh Air Quality Study from July 2001 to June 2002. These are supplemented with 5 months of size distribution data from 0.5 to 2.5μm measured with a TSI aerosol particle sizer and 2 months of size distributions measured at an upwind rural sampling site. Measurements at the main site were made continuously under both low and ambient relative humidity. The average Pittsburgh number concentration (3-500nm) is 22,000cm-3 with an average mode size of 40nm. Strong diurnal patterns in number concentrations are evident as a direct effect of the sources of particles (atmospheric nucleation, traffic, and other combustion sources). New particle formation from homogeneous nucleation is significant on 30-50% of study days and over a wide area (at least a hundred kilometers). Rural number concentrations are a factor of 2-3 lower (on average) than the urban values. Average measured distributions are different from model literature urban and rural size distributions. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ambient sampling for the Pittsburgh Air Quality Study (PAQS) was conducted from July 2001 to September 2002. The study was designed (1) to characterize particulate matter (PM) by examination of size, surface area, and volume distribution, chemical composition as a function of size and on a single particle basis, morphology, and temporal and spatial variability in the Pittsburgh region; (2) to quantify the impact of the various sources (transportation, power plants, biogenic sources, etc.) on the aerosol concentrations in the area; and (3) to develop and evaluate the next generation of atmospheric aerosol monitoring and modeling techniques. The PAQS objectives, study design, site descriptions and routine and intensive measurements are presented. Special study days are highlighted, including those associated with elevated concentrations of daily average PM2.5 mass. Monthly average and diurnal patterns in aerosol number concentration, and aerosol nitrate, sulfate, elemental carbon, and organic carbon concentrations, light scattering as well as gas-phase ozone, nitrogen oxides, and carbon monoxide are discussed with emphasis on the processes affecting them. Preliminary findings reveal day-to-day variability in aerosol mass and composition, but consistencies in seasonal average diurnal profiles and concentrations. For example, the seasonal average variations in the diurnal PM2.5 mass were predominately driven by the sulfate component. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.
Resumo:
This study explored the factors associated with state-level allocations to tobacco-control programs. The primary research question was whether public sentiment regarding tobacco control was a significant factor in the states' 2001 budget decisions. In addition to public opinion, several additional political and economic measures were considered. Significant associations were found between our outcome, state-level tobacco-control funding per capita, and key variables of interest including public opinion, amount of tobacco settlement received, the party affiliation of the governor, the state's smoking rate, excise tax revenue received, and whether the state was a major producer of tobacco. The findings from this study supported our hypothesis that states with citizens who favor more restrictive indoor air policies allocate more to tobacco control. Effective public education to change public opinion and the cultural norms surrounding smoking may affect political decisions and, in turn, increase funding for crucial public health programs.
Resumo:
An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.
Resumo:
As the population of urban poor living in slums increases, governments are trying to relocate people into government-provided free housing. Slum redevelopment affects every part of a household’s livelihood, but most importantly the health and wellbeing of younger generations. This paper investigates the effect of slum redevelopment schemes on child stunting levels. Data was collected in forty-one buildings under the slum-redevelopment program in Mumbai. The study demonstrates through a fixed effect regression analysis that an additional year of living in the building is associated with an increase in the height-for-age Z-score by 0.124 standard deviations. Possible explanations include an improvement in the overall hygienic environment, sanitation conditions, indoor air pollution, and access to health and water facilities. However, anecdotal evidence suggests that water contamination, loss of livelihood and increased expenses could worsen health outcomes for residents. This study prompts more research on the health effects of slum redevelopment projects, which are becoming increasingly common in the rapidly urbanizing developing world.