3 resultados para Indivisibility principle between teaching, research and extension
em Duke University
Memory-Based Attentional Guidance: A Window to the Relationship between Working Memory and Attention
Resumo:
Attention, the cognitive means by which we prioritize the processing of a subset of information, is necessary for operating efficiently and effectively in the world. Thus, a critical theoretical question is how information is selected. In the visual domain, working memory (WM)—which refers to the short-term maintenance and manipulation of information that is no longer accessible by the senses—has been highlighted as an important determinant of what is selected by visual attention. Furthermore, although WM and attention have traditionally been conceived as separate cognitive constructs, an abundance of behavioral and neural evidence indicates that these two domains are in fact intertwined and overlapping. The aim of this dissertation is to better understand the nature of WM and attention, primarily through the phenomenon of memory-based attentional guidance, whereby the active maintenance of items in visual WM reliably biases the deployment of attention to memory-matching items in the visual environment. The research presented here employs a combination of behavioral, functional imaging, and computational modeling techniques that address: (1) WM guidance effects with respect to the traditional dichotomy of top-down versus bottom-up attentional control; (2) under what circumstances the contents of WM impact visual attention; and (3) the broader hypothesis of a predictive and competitive interaction between WM and attention. Collectively, these empirical findings reveal the importance of WM as a distinct factor in attentional control and support current models of multiple-state WM, which may have broader implications for how we select and maintain information.
Resumo:
Background: Sickle cell disease (SCD) is a debilitating genetic blood disorder that seriously impacts the quality of life of affected individuals and their families. With 85% of cases occurring in sub-Saharan Africa, it is essential to identify the barriers and facilitators of optimal outcomes for people with SCD in this setting. This study focuses on understanding the relationship between support systems and disease outcomes for SCD patients and their families in Cameroon and South Africa.
Methods: This mixed-methods study utilizes surveys and semi-structured interviews to assess the experiences of 29 SCD patients and 28 caregivers of people with SCD across three cities in two African countries: Cape Town, South Africa; Yaoundé, Cameroon; and Limbe, Cameroon.
Results: Patients in Cameroon had less treatment options, a higher frequency of pain crises, and a higher incidence of malaria than patients in South Africa. Social support networks in Cameroon consisted of both family and friends and provided emotional, financial, and physical assistance during pain crises and hospital admissions. In South Africa, patients relied on a strong medical support system and social support primarily from close family members; they were also diagnosed later in life than those in Cameroon.
Conclusions: The strength of medical support systems influences the reliance of SCD patients and their caregivers on social support systems. In Cameroon the health care system does not adequately address all factors of SCD treatment and social networks of family and friends are used to complement the care received. In South Africa, strong medical and social support systems positively affect SCD disease burden for patients and their caregivers. SCD awareness campaigns are necessary to reduce the incidence of SCD and create stronger social support networks through increased community understanding and decreased stigma.
Resumo:
With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.