8 resultados para Incorrect Generalized Least Squares
em Duke University
Resumo:
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.
Resumo:
The evolution of reproductive strategies involves a complex calculus of costs and benefits to both parents and offspring. Many marine animals produce embryos packaged in tough egg capsules or gelatinous egg masses attached to benthic surfaces. While these egg structures can protect against environmental stresses, the packaging is energetically costly for parents to produce. In this series of studies, I examined a variety of ecological factors affecting the evolution of benthic development as a life history strategy. I used marine gastropods as my model system because they are incredibly diverse and abundant worldwide, and they exhibit a variety of reproductive and developmental strategies.
The first study examines predation on benthic egg masses. I investigated: 1) behavioral mechanisms of predation when embryos are targeted (rather than the whole egg mass); 2) the specific role of gelatinous matrix in predation. I hypothesized that gelatinous matrix does not facilitate predation. One study system was the sea slug Olea hansineensis, an obligate egg mass predator, feeding on the sea slug Haminoea vesicula. Olea fed intensely and efficiently on individual Haminoea embryos inside egg masses but showed no response to live embryos removed from gel, suggesting that gelatinous matrix enables predation. This may be due to mechanical support of the feeding predator by the matrix. However, Haminoea egg masses outnumber Olea by two orders of magnitude in the field, and each egg mass can contain many tens of thousands of embryos, so predation pressure on individuals is likely not strong. The second system involved the snail Nassarius vibex, a non-obligate egg mass predator, feeding on the polychaete worm Clymenella mucosa. Gel neither inhibits nor promotes embryo predation for Nassarius, but because it cannot target individual embryos inside an egg mass, its feeding is slow and inefficient, and feeding rates in the field are quite low. However, snails that compete with Nassarius for scavenged food have not been seen to eat egg masses in the field, leaving Nassarius free to exploit the resource. Overall, egg mass predation in these two systems likely benefits the predators much more than it negatively affects the prey. Thus, selection for environmentally protective aspects of egg mass production may be much stronger than selection for defense against predation.
In the second study, I examined desiccation resistance in intertidal egg masses made by Haminoea vesicula, which preferentially attaches its flat, ribbon-shaped egg masses to submerged substrata. Egg masses occasionally detach and become stranded on exposed sand at low tide. Unlike adults, the encased embryos cannot avoid desiccation by selectively moving about the habitat, and the egg mass shape has high surface-area-to-volume ratio that should make it prone to drying out. Thus, I hypothesized that the embryos would not survive stranding. I tested this by deploying individual egg masses of two age classes on exposed sand bars for the duration of low tide. After rehydration, embryos midway through development showed higher rates of survival than newly-laid embryos, though for both stages survival rates over 25% were frequently observed. Laboratory desiccation trials showed that >75% survival is possible in an egg mass that has lost 65% of its water weight, and some survival (<25%) was observed even after 83% water weight lost. Although many surviving embryos in both experiments showed damage, these data demonstrate that egg mass stranding is not necessarily fatal to embryos. They may be able to survive a far greater range of conditions than they normally encounter, compensating for their lack of ability to move. Also, desiccation tolerance of embryos may reduce pressure on parents to find optimal laying substrata.
The third study takes a big-picture approach to investigating the evolution of different developmental strategies in cone snails, the largest genus of marine invertebrates. Cone snail species hatch out of their capsules as either swimming larvae or non-dispersing forms, and their developmental mode has direct consequences for biogeographic patterns. Variability in life history strategies among taxa may be influenced by biological, environmental, or phylogenetic factors, or a combination of these. While most prior research has examined these factors singularly, my aim was to investigate the effects of a host of intrinsic, extrinsic, and historical factors on two fundamental aspects of life history: egg size and egg number. I used phylogenetic generalized least-squares regression models to examine relationships between these two egg traits and a variety of hypothesized intrinsic and extrinsic variables. Adult shell morphology and spatial variability in productivity and salinity across a species geographic range had the strongest effects on egg diameter and number of eggs per capsule. Phylogeny had no significant influence. Developmental mode in Conus appears to be influenced mostly by species-level adaptations and niche specificity rather than phylogenetic conservatism. Patterns of egg size and egg number appear to reflect energetic tradeoffs with body size and specific morphologies as well as adaptations to variable environments. Overall, this series of studies highlights the importance of organism-scale biotic and abiotic interactions in evolutionary patterns.
Resumo:
We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c1111p =-3.6673× 1017 N/m2 and a fourth order electroelastic tensor value of e3111 =1.7212× 108 m/V. © 2010 American Institute of Physics.
Resumo:
Complex diseases will have multiple functional sites, and it will be invaluable to understand the cross-locus interaction in terms of linkage disequilibrium (LD) between those sites (epistasis) in addition to the haplotype-LD effects. We investigated the statistical properties of a class of matrix-based statistics to assess this epistasis. These statistical methods include two LD contrast tests (Zaykin et al., 2006) and partial least squares regression (Wang et al., 2008). To estimate Type 1 error rates and power, we simulated multiple two-variant disease models using the SIMLA software package. SIMLA allows for the joint action of up to two disease genes in the simulated data with all possible multiplicative interaction effects between them. Our goal was to detect an interaction between multiple disease-causing variants by means of their linkage disequilibrium (LD) patterns with other markers. We measured the effects of marginal disease effect size, haplotype LD, disease prevalence and minor allele frequency have on cross-locus interaction (epistasis). In the setting of strong allele effects and strong interaction, the correlation between the two disease genes was weak (r=0.2). In a complex system with multiple correlations (both marginal and interaction), it was difficult to determine the source of a significant result. Despite these complications, the partial least squares and modified LD contrast methods maintained adequate power to detect the epistatic effects; however, for many of the analyses we often could not separate interaction from a strong marginal effect. While we did not exhaust the entire parameter space of possible models, we do provide guidance on the effects that population parameters have on cross-locus interaction.
Resumo:
Limb, trunk, and body weight measurements were obtained for growth series of Milne-Edwards's diademed sifaka, Propithecus diadema edwardsi, and the golden-crowned sifaka, Propithecus tattersalli. Similar measures were obtained also for primarily adults of two subspecies of the western sifaka: Propithecus verreauxi coquereli, Coquerel's sifaka, and Propithecus verreauxi verreauxi, Verreaux's sifaka. Ontogenetic series for the larger-bodied P. d. edwardsi and the smaller-bodied P. tattersalli were compared to evaluate whether species-level differences in body proportions result from the differential extension of common patterns of relative growth. In bivariate plots, both subspecies of P. verreauxi were included to examine whether these taxa also lie along a growth trajectory common to all sifakas. Analyses of the data indicate that postcranial proportions for sifakas are ontogenetically scaled, much as demonstrated previously with cranial dimensions for all three species (Ravosa, 1992). As such, P. d. edwardsi apparently develops larger overall size primarily by growing at a faster rate, but not for a longer duration of time, than P. tattersalli and P. verreauxi; this is similar to results based on cranial data. A consideration of Malagasy lemur ecology suggests that regional differences in forage quality and resource availability have strongly influenced the evolutionary development of body-size variation in sifakas. On one hand, the rainforest environment of P. d. edwardsi imposes greater selective pressures for larger body size than the dry-forest environment of P. tattersalli and P. v. coquereli, or the semi-arid climate of P. v. verreauxi. On the other hand, as progressively smaller-bodied adult sifakas are located in the east, west, and northwest, this apparently supports suggestions that adult body size is set by dry-season constraints on food quality and distribution (i.e., smaller taxa are located in more seasonal habitats such as the west and northeast). Moreover, the fact that body-size differentiation occurs primarily via differences in growth rate is also due apparently to differences in resource seasonality (and juvenile mortality risk in turn) between the eastern rainforest and the more temperate northeast and west. Most scaling coefficients for both arm and leg growth range from slight negative allometry to slight positive allometry. Given the low intermembral index for sifakas, which is also an adaptation for propulsive hindlimb-dominated jumping, this suggests that differences in adult limb proportions are largely set prenatally rather than being achieved via higher rates of postnatal hindlimb growth.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.
Resumo:
OBJECTIVE: Bacterial colonization of the fetal membranes and its role in pathogenesis of membrane rupture is poorly understood. Prior retrospective work revealed chorion layer thinning in preterm premature rupture of membranes (PPROM) subjects. Our objective was to prospectively examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects. STUDY DESIGN: Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects. Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemistry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using Student's t-test, linear mixed effect model, and Poisson regression model (SAS Cary, NC). RESULTS: In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site (147.2 vs. 253.7 µm, p<0.0001). Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined, regardless of site sampled [PPROM(114.9) vs. PTL(246.0) vs. PTNL(200.8) vs. TL(217.9) vs. TNL(246.5)]. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection [PPROM(31) vs. PTL(9) vs. PTNL(7) vs. TL(7) vs. TNL(6)]. Among all subjects at both sites, bacterial counts were inversely correlated with chorion thinning, even excluding histologic chorioamnionitis (p<0.0001 and p = 0.05). CONCLUSIONS: Fetal chorion was uniformly thinner at rupture site compared to distant sites. In PPROM fetal chorion, we demonstrated pronounced global thinning. Although cause or consequence is uncertain, bacterial presence is greatest and inversely correlated with chorion thinning among PPROM subjects.
Resumo:
A shearing quotient (SQ) is a way of quantitatively representing the Phase I shearing edges on a molar tooth. Ordinary or phylogenetic least squares regression is fit to data on log molar length (independent variable) and log sum of measured shearing crests (dependent variable). The derived linear equation is used to generate an 'expected' shearing crest length from molar length of included individuals or taxa. Following conversion of all variables to real space, the expected value is subtracted from the observed value for each individual or taxon. The result is then divided by the expected value and multiplied by 100. SQs have long been the metric of choice for assessing dietary adaptations in fossil primates. Not all studies using SQ have used the same tooth position or crests, nor have all computed regression equations using the same approach. Here we focus on re-analyzing the data of one recent study to investigate the magnitude of effects of variation in 1) shearing crest inclusion, and 2) details of the regression setup. We assess the significance of these effects by the degree to which they improve or degrade the association between computed SQs and diet categories. Though altering regression parameters for SQ calculation has a visible effect on plots, numerous iterations of statistical analyses vary surprisingly little in the success of the resulting variables for assigning taxa to dietary preference. This is promising for the comparability of patterns (if not casewise values) in SQ between studies. We suggest that differences in apparent dietary fidelity of recent studies are attributable principally to tooth position examined.