3 resultados para Impacts on Health

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceived discrimination is associated with increased engagement in unhealthy behaviors. We propose an identity-based pathway to explain this link. Drawing on an identity-based motivation model of health behaviors (Oyserman, Fryberg, & Yoder, 2007), we propose that erceptions of discrimination lead individuals to engage in ingroup-prototypical behaviors in the service of validating their identity and creating a sense of ingroup belonging. To the extent that people perceive unhealthy behaviors as ingroup-prototypical, perceived discrimination may thus increase motivation to engage in unhealthy behaviors. We describe our theoretical model and two studies that demonstrate initial support for some paths in this model. In Study 1, African American participants who reflected on racial discrimination were more likely to endorse unhealthy ingroup-prototypical behavior as self-characteristic than those who reflected on a neutral event. In Study 2, among African American participants who perceived unhealthy behaviors to be ingroup-prototypical, discrimination predicted greater endorsement of unhealthy behaviors as self-characteristic as compared to a control condition. These effects held both with and without controlling for body mass index (BMI) and income. Broader implications of this model for how discrimination adversely affects health-related decisions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species invasions are more prevalent than ever before. While the addition of a species can dramatically change critical ecosystem processes, factors that mediate the direction and magnitude of those impacts have received less attention. A better understanding of the factors that mediate invasion impacts on ecosystem functioning is needed in order to target which exotic species will be most harmful and which systems are most vulnerable. The role of invasion on nitrogen (N) cycling is particularly important since N cycling controls ecosystem services that provision human health, e.g. nutrient retention and water quality.

We conducted a meta-analysis and in-depth studies focused on the invasive grass species, Microstegium vimineum, to better understand how (i) plant characteristics, (ii) invader abundance and neighbor identity, and (iii) environmental conditions mediate the impacts of invasion on N pools and fluxes. The results of our global meta-analysis support the concept that invasive species and reference community traits such as leaf %N and leaf C:N are useful for understanding invasion impacts on soil N cycling, but that trait dissimilarities between invaded and reference communities are most informative. Regarding the in-depth studies of Microstegium, we did not find evidence to suggest that invasion increases net nitrification as other studies have shown. Instead, we found that an interaction between its abundance and the neighboring plant identify were important for determining soil nitrate concentrations and net nitrification rates in the greenhouse. In field, we found that variability in environmental conditions mediated the impact of Microstegium invasion on soil N pools and fluxes, primarily net ammonification, between sites through direct, indirect, and interactive pathways. Notably, we detected a scenario in which forest openness has a negative direct effect and indirect positive effect on ammonification in sites with high soil moisture and organic matter. Collectively, our findings suggest that dissimilarity in plant community traits, neighbor identity, and environmental conditions can be important drivers of invasion impacts on ecosystem N cycling and should be considered when evaluating the ecosystem impacts of invasive species across heterogeneous landscapes.