1 resultado para Image post processing
em Duke University
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (23)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Aston University Research Archive (35)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (36)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (11)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (35)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Harvard University (23)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Open Access Repository of Indian Theses (1)
- Publishing Network for Geoscientific & Environmental Data (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (80)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (11)
- Scielo Uruguai (1)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (66)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universita di Parma (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (64)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (165)
- University of Queensland eSpace - Australia (40)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- USA Library of Congress (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.