3 resultados para IT intention to learn

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

© Comer, Clark, Canelas.This study aimed to evaluate how peer-to-peer interactions through writing impact student learning in introductory-level massive open online courses (MOOCs) across disciplines. This article presents the results of a qualitative coding analysis of peer-to-peer interactions in two introductory level MOOCs: English Composition I: Achieving Expertise and Introduction to Chemistry. Results indicate that peer-to-peer interactions in writing through the forums and through peer assessment enhance learner understanding, link to course learning objectives, and generally contribute positively to the learning environment. Moreover, because forum interactions and peer review occur in written form, our research contributes to open distance learning (ODL) scholarship by highlighting the importance of writing to learn as a significant pedagogical practice that should be encouraged more in MOOCs across disciplines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.