3 resultados para INDUCED CONFORMATIONAL-CHANGES
em Duke University
Resumo:
The MazEF toxin-antitoxin (TA) system consists of the antitoxin MazE and the toxin MazF. MazF is a sequence-specific endoribonuclease that upon activation causes cellular growth arrest and increass the level of persisters. Moreover, MazF-induced cells are in a quasi-dormant state that cells remain metabolically active while stop dividing. The quasi-dormancy is similar to the nonreplicating state of M. tuberculosis during latent tuberculosis, thus suggesting the role of mazEF in M. tuberculosis dormancy and persistence. M. tuberculosis has nine mazEF TA modules, each with different RNA cleavage specificities and implicated in selective gene expression during stress conditions. To date only the Bacillus subtilis MazF-RNA complex structure has been determined. As M. tuberculosis MazF homologues recognize distinct RNA sequences, their molecular mechanisms of substrate specificity remain unclear. By taking advantage of X-ray crystallography, we have determined structures of two M. tuberculosis MazF-RNA complexes, MazF-mt1 (Rv2801c) and MazF-mt3 (Rv1991c) in complex with an uncleavable RNA substrate. These structures have provided the molecular basis of sequence-specific RNA recognition and cleavage by MazF toxins.
Both MazF-mt1-RNA and MazF-mt3-RNA complexes showed similar structural organization with one molecule of RNA bound to a MazF-mt1 or MazF-mt3 dimer and occupying the same pocket within the MazF dimer interface. Similar to B. subtilis MazF-RNA complex, MazF-mt1 and MazF-mt3 displayed a conserved active site architecture, where two highly conserved residues, Arg and Thr, form hydrogen bonds with the scissile phosphate group in the cleavage site of the bound RNA. The MazF-mt1-RNA complex also showed specific interactions with its three-base RNA recognition element. Compared with the B. subtilis MazF-RNA complex, our structures showed that residues involved in sequence-specific recognition of target RNA vary between the MazF homologues, therefore explaining the molecular basis for their different RNA recognition sequences. In addition, local conformational changes of the loops in the RNA binding site of MazF-mt1 appear to play a role in MazF targeting different RNA lengths and sequences. In contrast, the MazF-mt3-RNA complex is in a non-optimal RNA binding state with a symmetry-related MazF-mt3 molecule found to make interactions with the bound RNA in the crystal. The crystal-packing interactions were further examined by isothermal titration calorimetry (ITC) studies on selected MazF-mt3 mutants. Our attempts to utilize a MazF-mt3 mutant bearing mutations involved in crystal contacts all crystallized with few nucleotides, which are still found to interact with a symmetry mate. However, these different crystal forms revealed the conformational flexibility of loops in the RNA binding interface of MazF-mt3, suggesting their role in RNA binding and recognition, which will require further studies on additional MazF-mt3-RNA complex interactions.
In conclusion, the structures of the MazF-mt1-RNA and MazF-mt3-RNA complexes provide the first structural information on any M. tuberculosis MazF homologues. Supplemented with structure-guided mutational studies on MazF toxicity in vivo, this study has addressed the structural basis of different RNA cleavage specificities among MazF homologues. Our work will guide future studies on the function of other M. tuberculosis MazF and MazE-MazF homologues, and will help delineate their physiological roles in M. tuberculosis stress responses and pathogenesis.
Resumo:
Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of
type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble
supra-‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-‐‑FN interactions, the nature of these interactions and the domains of FN that
are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.
The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-‐‑D exchange, and
provide a comprehensive analysis of stability and unfolding/folding kinetics of each
domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.
A long-‐‑standing debate in the protein-‐‑folding field is whether unfolding rate
constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-‐‑FN interactions during matrix fibril formation are not known. FNI 1-‐‑9 or the N-‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-‐‑9 via a tandem ß zipper. In the present study we
use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-‐‑9.
Resumo:
Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.
In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.
I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.
Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.
Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.