8 resultados para INDIANS MOVEMENTS

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: With the globalization of clinical trials, large developing nations have substantially increased their participation in multi-site studies. This participation has raised ethical concerns, among them the fear that local customs, habits and culture are not respected while asking potential participants to take part in study. This knowledge gap is particularly noticeable among Indian subjects, since despite the large number of participants, little is known regarding what factors affect their willingness to participate in clinical trials. METHODS: We conducted a meta-analysis of all studies evaluating the factors and barriers, from the perspective of potential Indian participants, contributing to their participation in clinical trials. We searched both international as well as Indian-specific bibliographic databases, including Pubmed, Cochrane, Openjgate, MedInd, Scirus and Medknow, also performing hand searches and communicating with authors to obtain additional references. We enrolled studies dealing exclusively with the participation of Indians in clinical trials. Data extraction was conducted by three researchers, with disagreement being resolved by consensus. RESULTS: Six qualitative studies and one survey were found evaluating the main themes affecting the participation of Indian subjects. Themes included Personal health benefits, Altruism, Trust in physicians, Source of extra income, Detailed knowledge, Methods for motivating participants as factors favoring, while Mistrust on trial organizations, Concerns about efficacy and safety of trials, Psychological reasons, Trial burden, Loss of confidentiality, Dependency issues, Language as the barriers. CONCLUSION: We identified factors that facilitated and barriers that have negative implications on trial participation decisions in Indian subjects. Due consideration and weightage should be assigned to these factors while planning future trials in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: With the global expansion of clinical trials and the expectations of the rise of the emerging economies known as BRICs (Brazil, Russia, India and China), the understanding of factors that affect the willingness to participate in clinical trials of patients from those countries assumes a central role in the future of health research. METHODS: We conducted a systematic review and meta-analysis (SRMA) of willingness to participate in clinical trials among Brazilian patients and then we compared it with Indian patients (with results of another SRMA previously conducted by our group) through a system dynamics model. RESULTS: Five studies were included in the SRMA of Brazilian patients. Our main findings are 1) the major motivation for Brazilian patients to participate in clinical trials is altruism, 2) monetary reimbursement is the least important factor motivating Brazilian patients, 3) the major barrier for Brazilian patients to not participate in clinical trials is the fear of side effects, and 4) Brazilian patients are more likely willing to participate in clinical trials than Indians. CONCLUSION: Our study provides important insights for investigators and sponsors for planning trials in Brazil (and India) in the future. Ignoring these results may lead to unnecessary fund/time spending. More studies are needed to validate our results and for better understanding of this poorly studied theme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments that demonstrated a role for the substantia nigra in eye movements have played an important role in our understanding of the function of the basal ganglia in behavior more broadly. In this review we explore more recent experiments that extend the role of the substantia nigra pars reticulata from a simple gate for eye movements to include a role in cognitive processes for eye movements. We review recent evidence suggesting that basal ganglia nuclei beyond the substantia nigra may also play a role in eye movements and the cognitive events leading up to the production of eye movements. We close by pointing out some unresolved questions in our understanding of the relationship of basal ganglia nuclei and eye movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because the interactions between feedforward influences are inextricably linked during many motor outputs (including but not limited to walking), the contribution of descending inputs to the generation of movements is difficult to study. Here we take advantage of the relatively small number of descending neurons (DNs) in the Drosophila melanogaster model system. We first characterize the number and distribution of the DN populations, then present a novel load free preparation, which enables the study of descending control on limb movements in a context where sensory feedback can be is reduced while leaving the nervous system, musculature, and cuticle of the animal relatively intact. Lastly we use in-vivo whole cell patch clamp electrophysiology to characterize the role of individual DNs in response to specific sensory stimuli and in relationship to movement. We find that there are approximately 1100 DNs in Drosophila that are distributed across six clusters. Input from these DNs is not necessary for coordinated motor activity, which can be generated by the thoracic ganglion, but is necessary for the specific combinations of joint movements typically observed in walking. Lastly, we identify a particular cluster of DNs that are tuned to sensory stimuli and innervate the leg neuromeres. We propose that a multi-layered interaction between these DNs, other DNs, and motor circuits in the thoracic ganglia enable the diverse but well-coordinated range of motor outputs an animal might exhibit.