6 resultados para Hyperbolic functions
em Duke University
Resumo:
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.
Resumo:
B-lymphocytes have traditionally been thought to contribute to immunity and autoimmune disease through terminal differentiation into plasma cells that secrete antibody. However, studies in mice and recent clinical studies have demonstrated that genetically altered B-cell function and B-cell-targeted therapies can significantly affect autoimmune diseases that were predominantly thought to be T-cell-mediated. B-cell depletion in mouse models of disease has also led to the identification of alternative B-cell effector functions that regulate normal immune responses and autoimmune disease. This review highlights multiple B-cell effector mechanisms, including the promotion of cellular immunity, the negative regulation of immune responses, and the production of pathogenic antibodies.
Resumo:
© 2010 by the American Geophysical Union.The cross-scale probabilistic structure of rainfall intensity records collected over time scales ranging from hours to decades at sites dominated by both convective and frontal systems is investigated. Across these sites, intermittency build-up from slow to fast time-scales is analyzed in terms of heavy tailed and asymmetric signatures in the scale-wise evolution of rainfall probability density functions (pdfs). The analysis demonstrates that rainfall records dominated by convective storms develop heavier-Tailed power law pdfs toward finer scales when compared with their frontal systems counterpart. Also, a concomitant marked asymmetry build-up emerges at such finer time scales. A scale-dependent probabilistic description of such fat tails and asymmetry appearance is proposed based on a modified q-Gaussian model, able to describe the cross-scale rainfall pdfs in terms of the nonextensivity parameter q, a lacunarity (intermittency) correction and a tail asymmetry coefficient, linked to the rainfall generation mechanism.
Resumo:
Beta-arrestins bind to activated G protein-coupled receptor kinase-phosphorylated receptors, which leads to their desensitization with respect to G proteins, internalization via clathrin-coated pits, and signaling via a growing list of "scaffolded" pathways. To facilitate the discovery of novel adaptor and signaling roles of beta-arrestins, we have developed and validated a generally applicable interfering RNA approach for selectively suppressing beta-arrestins 1 or 2 expression by up to 95%. Beta-arrestin depletion in HEK293 cells leads to enhanced cAMP generation in response to beta(2)-adrenergic receptor stimulation, markedly reduced beta(2)-adrenergic receptor and angiotensin II receptor internalization and impaired activation of the MAP kinases ERK 1 and 2 by angiotensin II. This approach should allow discovery of novel signaling and regulatory roles for the beta-arrestins in many seven-membrane-spanning receptor systems.
Resumo:
Theories hold that autobiographical memory serves several broad functions (directive, self, and social). In the current study, items were derived from the theoretical literature to create the Thinking About Life Experiences (TALE) questionnaire to empirically assess these three functions. Participants (N = 167) completed the TALE. To examine convergent validity, they also rated their overall tendency to think about and to talk about the past and completed the Reminiscence Functions Scale (Webster, 1997). The results lend support to the existence of these theoretical functions, but also offer room for refinements in future thinking about both the breadth and specificity of the functions that autobiographical memory serves.
Resumo:
Animals communicating via scent often deposit composite signals that incorporate odorants from multiple sources; however, the function of mixing chemical signals remains understudied. We tested both a 'multiple-messages' and a 'fixative' hypothesis of composite olfactory signalling, which, respectively, posit that mixing scents functions to increase information content or prolong signal longevity. Our subjects-adult, male ring-tailed lemurs (Lemur catta)-have a complex scent-marking repertoire, involving volatile antebrachial (A) secretions, deposited pure or after being mixed with a squalene-rich paste exuded from brachial (B) glands. Using behavioural bioassays, we examined recipient responses to odorants collected from conspecific strangers. We concurrently presented pure A, pure B and mixed A + B secretions, in fresh or decayed conditions. Lemurs preferentially responded to mixed over pure secretions, their interest increasing and shifting over time, from sniffing and countermarking fresh mixtures, to licking and countermarking decayed mixtures. Substituting synthetic squalene (S)-a well-known fixative-for B secretions did not replicate prior results: B secretions, which contain additional chemicals that probably encode salient information, were preferred over pure S. Whereas support for the 'multiple-messages' hypothesis underscores the unique contribution from each of an animal's various secretions, support for the 'fixative' hypothesis highlights the synergistic benefits of composite signals.