3 resultados para Hydrodynamic weather forecasting.

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Human Kinetics, Inc.Background: Young children's physical activity (PA) is influenced by their child care environment. This study assessed PA practices in centers from Massachusetts (MA) and Rhode Island (RI), compared them to best practice recommendations, and assessed differences between states and center profit status. We also assessed weather-related practices. Methods: Sixty percent of MA and 54% of RI directors returned a survey, for a total of 254. Recommendations were 1) daily outdoor play, 2) providing outdoor play area, 3) limiting fixed play structures, 4) variety of portable play equipment, and 5) providing indoor play area. We fit multivariable linear regression models to examine adjusted associations between state, profit status, PA, and weather-related practices. Results: MA did not differ from RI in meeting PA recommendations (β = 0.03; 0.15, 0.21; P = .72), but MA centers scored higher on weather-related practices (β = 0.47; 0.16, 0.79; P = .004). For-profit centers had lower PA scores compared with nonprofits (β = -0.20; 95% CI: -0.38, -0.02; P = .03), but they did not differ for weather (β = 0.12; -0.19, 0.44; P = .44). Conclusions: More MA centers allowed children outside in light rain or snow. For-profit centers had more equipment-both fixed and portable. Results from this study may help inform interventions to increase PA in children.