12 resultados para Human Mesangial Cells

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro. OBJECTIVE: To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro. SUMMARY OF BACKGROUND DATA: TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown. METHODS: IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells. RESULTS: Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively. CONCLUSION: Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF). To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. RESULTS: Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER) marker, TRAPalpha, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939), an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. CONCLUSION: These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.

In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.

In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.

These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial colonization of the upper respiratory tract is the first step in the pathogenesis of nontypeable Haemophilus influenzae (NTHi) disease. Examination of the determinants of NTHi colonization process has been hampered by the lack of an appropriate animal model. To address this, we have developed a model of NTHi colonization in adult rhesus macaques that involves intranasal inoculation of 1x105 CFU and results in persistent colonization of the upper respiratory tract for at least three weeks with no signs of disease, mimicking asymptomatic colonization of humans. Using this model, we assessed the contributions to colonization of the HMW1 and HMW2 adhesive proteins. In competition experiments, the parent strain expressing both HMW1 and HMW2 was able to efficiently out-compete an isogenic mutant strain expressing neither HMW1 nor HMW2. In experiments involving inoculation of single isogenic derivatives of NTHi strain 12, the strains expressing HMW1 or HMW2 or both were able to colonize efficiently, while the strain expressing neither HMW1 nor HMW2 colonized inefficiently. Furthermore, colonization resulted in antibody production against HMW1 and HMW2 in one-third of the animals, demonstrating that colonization can be an immunizing event. In conclusion, we have established that NTHi is capable of colonizing the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response. The HMW1 and HMW2 adhesive proteins play a major role in the process of colonization.

After establishing that the HMW1 and HMW2 proteins are colonization factors we further investigated the determinants of HMW1 function. HMW1 is encoded in the same genetic locus as two other proteins, HMW1B and HMW1C, with which HMW1 must interact in order to be functional. Interaction with HMW1C in the cytoplasm results in the glycosylation of HMW1. By employing homologues of HMW1C that glycosylate HMW1 in slightly different patterns we show that the pattern of modification is critical to HMW1 function. Structural analysis showed a change in protein structure when the pattern of HMW1 modification differed. We also identified two specific sites which must be glycosylated for HMW1 to function properly. These point mutations did not have a significant effect on protein structure, suggesting that glycosylation at those specific sites is instead necessary for interaction of HMW1 with its receptor. HMW1B is an outer membrane pore through which HMW1 is transported to reach the bacterial cell surface. We observed that HMW1 isolated from the cytoplasm has a different structure than HMW1 isolated from the bacterial cell surface. By forcing HMW1 to be secreted in a non-HMW1B dependent manner, we show that secretion alone is not sufficient for HMW1 to obtain a functional structure. This leads us to hypothesize that there is something specific in the interaction between HMW1 and HMW1B that aids in proper HMW1 folding.

The NTHi HMW1C glycosyltransferase mediates unconventional N-linked glycosylation of HMW1. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. To determine if this mechanism of N-linked glycosylation is employed by species other than NTHi, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. LC-MS/MS analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kingella kingae is a bacterial pathogen that is increasingly recognized as an etiology of septic arthritis, osteomyelitis, bacteremia, and endocarditis in young children. The pathogenesis of K. kingae disease starts with bacterial adherence to the respiratory epithelium of the posterior pharynx. Previous work has identified type IV pili and a trimeric autotransporter protein called Knh (Kingella NhhA homolog) as critical factors for adherence to human epithelial cells. Additional studies established that the presence of a polysaccharide capsule interferes with Knh-mediated adherence. Given the inhibitory role of capsule during adherence we sought to uncover the genes involved in capsule expression to understand how capsule is elaborated on the cell surface. Additionally, this work aimed to further characterize capsule diversity among K. kingae clinical isolates and to investigate the relationship between capsule type and site of isolation.

We first set out to identify the carbohydrates present in the K. kingae capsule present in the prototype strain 269-492. Glycosyl composition and NMR analysis of surface extractable polysaccharides demonstrated two distinct polysaccharides, one consisting of GalNAc and Kdo with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and the other containing galactose alone with the structure →5)-β-Galf-(1→.

To discern the two polysaccharides we disrupted the ctrA gene required for surface localization of the K. kingae polysaccharide capsule and observed a loss of GalNAc and Kdo but no effect on the presence of Gal in bacterial surface extracts. In contrast, deletion of the pamABCDE locus involved in production of a reported galactan exopolysaccharide eliminated Gal but had no effect on the presence of GalNAc and Kdo in surface extracts. These results established that K. kingae strain KK01 produces a polysaccharide capsule with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and a separate exopolysaccharide with the structure →5)-β-Galf-(1→.

Having established that K. kingae produces a capsule comprised of GalNAc and Kdo, we next set out to identify the genetic determinants of capsule through a transposon mutagenesis screen. In addition to the previously identified ctrABCD operon, lipA, lipB, and a putative glycosyltransferase termed csaA (capsule synthesis region A gene A) were found to be essential for the production of surface-localized capsule. The ctr operon, lipA, lipB, and csaA were found to be present at unlinked locations throughout the genome, which is atypical for gram-negative organisms that elaborate a capsule dependent on an ABC-type transporter for surface localization. Through examining capsule localization in the ctrA, lipA, lipB, and csaA mutant strains, we determined that the ctrABCD, lipA/lipB, and csaA gene products respectively function in capsule export, assembly, and synthesis, respectively. The GalNAc transferase and Kdo transferase domains found in CsaA further support its role in catalyzing the synthesis of the GalNAc-Kdo capsule in the K. kingae prototype strain.

To investigate the capsule diversity that exists in K. kingae we screened a panel of strains isolated from patients with invasive disease or healthy carriers for the csaA capsule synthesis locus. We discovered that Kingella kingae expresses one of 4 capsule synthesis loci (csa, csb, csc, or csd) associated with a capsule consisting of Kdo and GalNAc (type a), Kdo and GlcNAc (type b), Kdo and ribose (type c), and GlcNAc and galactose (type d), respectively. Cloning of the csa, csb, csc, or csd locus into the empty flanking gene region in a non-encapsulated mutant (creation of an isogenic capsule swap) was sufficient to produce either the type a, type b, or type c capsule, respectively, further supporting the role of these loci in expression of a specific polysaccharide linkage. Capsule type a and capsule type b accounted for 96% of invasive strains. Conversely, capsule type c and capsule type d were found disproportionately among carrier isolates, suggesting that capsule type is important in promoting invasion and dissemination.

In conclusion, we discovered that Kingella kingae expresses a polysaccharide capsule and an exopolysaccharide on its surface that require distinct genetic loci for surface localization. Further investigation into genetic determinants of encapsulation revealed the loci ctrABCD, lipA/lipB, and a putative glycosyltransferase are required for capsule expression, with the gene products having roles in capsule export, assembly, and synthesis, respectively. The putative glycosyltransferase CsaA was determined to be a bifunctional enzyme with both GalNAc-transferase and Kdo-transferase activity. Furthermore, we discovered a total of 4 capsule types expressed in clinical isolates of K. kingae, each with a distinct capsule synthesis locus. The variation in the proportion of capsule types found between invasive strains and carriage strains suggest that capsule type is important in promoting invasion and dissemination. Taken together, this work expands our knowledge of the capsule types expressed among K. kingae carrier and invasive isolates and provides insights into the common genetic determinants of capsule expression. These contributions may lead to selecting clinically relevant capsule types to develop into a capsule based vaccine to prevent K. kingae colonization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.

In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.

Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.

Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that establishes a lifelong latent infection in over ninety percent of all adult humans worldwide. While typically benign, EBV has been causally associated with a number of human malignancies in the settings of immune suppression, genetic, and/or environmental factors. While a highly successful pathogen based on prevalence, the ability of the virus to immortalize human B cells (a stage of infection thought to be critical for the establishment of latency) is quite poor. We hypothesize that the interactions between the virus and the human host early after infection are ultimately important for the outcome of viral latency establishment. To answer this question we broadly profiled primary human B cells at both early and late times after EBV infection to assay both host mRNA expression and the host-driven response to apoptotic stimuli. We found that EBV infection induces host gene expression signatures early after infection that are functionally distinct from the gene expression program late after infection. These studies also led to the novel discovery that viral gene expression is controlled differently early after infection, including the delayed expression of a viral protein that is critical for the establishment of latency. Furthermore, we have also shown that EBV can use a single viral protein to alter and repress host apoptotic sensitivity in the face of an anti-viral apoptotic response.