4 resultados para History of population
em Duke University
Resumo:
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.
Resumo:
Childhood sexual abuse is prevalent among people living with HIV, and the experience of shame is a common consequence of childhood sexual abuse and HIV infection. This study examined the role of shame in health-related quality of life among HIV-positive adults who have experienced childhood sexual abuse. Data from 247 HIV-infected adults with a history of childhood sexual abuse were analyzed. Hierarchical linear regression was conducted to assess the impact of shame regarding both sexual abuse and HIV infection, while controlling for demographic, clinical, and psychosocial factors. In bivariate analyses, shame regarding sexual abuse and HIV infection were each negatively associated with health-related quality of life and its components (physical well-being, function and global well-being, emotional and social well-being, and cognitive functioning). After controlling for demographic, clinical, and psychosocial factors, HIV-related, but not sexual abuse-related, shame remained a significant predictor of reduced health-related quality of life, explaining up to 10% of the variance in multivariable models for overall health-related quality of life, emotional, function and global, and social well-being and cognitive functioning over and above that of other variables entered into the model. Additionally, HIV symptoms, perceived stress, and perceived availability of social support were associated with health-related quality of life in multivariable models. Shame is an important and modifiable predictor of health-related quality of life in HIV-positive populations, and medical and mental health providers serving HIV-infected populations should be aware of the importance of shame and its impact on the well-being of their patients.
Resumo:
UNLABELLED: • PREMISE OF THE STUDY: Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS: Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS: Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS: Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.