9 resultados para High Intensity

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Exercise Intensity Trial (EXcITe) is a randomized trial to compare the efficacy of supervised moderate-intensity aerobic training to moderate to high-intensity aerobic training, relative to attention control, on aerobic capacity, physiologic mechanisms, patient-reported outcomes, and biomarkers in women with operable breast cancer following the completion of definitive adjuvant therapy. METHODS/DESIGN: Using a single-center, randomized design, 174 postmenopausal women (58 patients/study arm) with histologically confirmed, operable breast cancer presenting to Duke University Medical Center (DUMC) will be enrolled in this trial following completion of primary therapy (including surgery, radiation therapy, and chemotherapy). After baseline assessments, eligible participants will be randomized to one of two supervised aerobic training interventions (moderate-intensity or moderate/high-intensity aerobic training) or an attention-control group (progressive stretching). The aerobic training interventions will include 150 mins.wk⁻¹ of supervised treadmill walking per week at an intensity of 60%-70% (moderate-intensity) or 60% to 100% (moderate to high-intensity) of the individually determined peak oxygen consumption (VO₂peak) between 20-45 minutes/session for 16 weeks. The progressive stretching program will be consistent with the exercise interventions in terms of program length (16 weeks), social interaction (participants will receive one-on-one instruction), and duration (20-45 mins/session). The primary study endpoint is VO₂peak, as measured by an incremental cardiopulmonary exercise test. Secondary endpoints include physiologic determinants that govern VO₂peak, patient-reported outcomes, and biomarkers associated with breast cancer recurrence/mortality. All endpoints will be assessed at baseline and after the intervention (16 weeks). DISCUSSION: EXCITE is designed to investigate the intensity of aerobic training required to induce optimal improvements in VO₂peak and other pertinent outcomes in women who have completed definitive adjuvant therapy for operable breast cancer. Overall, this trial will inform and refine exercise guidelines to optimize recovery in breast and other cancer survivors following the completion of primary cytotoxic therapy. TRIAL REGISTRATION: NCT01186367.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The conventional treatment protocol in high-intensity focused ultrasound (HIFU) therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs) inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. METHODS: An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-gamma-secreting cells in HIFU-treated mice. RESULTS: HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an enhanced anti-tumor immune response than dense-scan HIFU, while their suppressive effects on the treated primary tumor were maintained at the same level. Flow cytometry analysis showed that sparse-scan HIFU was more effective than dense-scan HIFU in enhancing DC infiltration into tumor tissues and promoting their maturation in situ. CONCLUSION: Optimizing scan strategy is a feasible way to boost HIFU-induced anti-tumor immunity by more effectively promoting DC maturation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

College students generated autobiographical memories from distinct emotional categories that varied in valence (positive vs. negative) and intensity (high vs. low). They then rated various perceptual, cognitive, and emotional properties for each memory. The distribution of these emotional memories favored a vector model over a circumplex model. For memories of all specific emotions, intensity accounted for significantly more variance in autobiographical memory characteristics than did valence or age of the memory. In two additional experiments, we examined multiple memories of emotions of high intensity and positive or negative valence and of positive valence and high or low intensity. Intensity was a more consistent predictor of autobiographical memory properties than was valence or the age of the memory in these experiments as well. The general effects of emotion on autobiographical memory properties are due primarily to intensity differences in emotional experience, not to benefits or detriments associated with a specific valence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intensity and valence of 30 emotion terms, 30 events typical of those emotions, and 30 autobiographical memories cued by those emotions were each rated by different groups of 40 undergraduates. A vector model gave a consistently better account of the data than a circumplex model, both overall and in the absence of high-intensity, neutral valence stimuli. The Positive Activation - Negative Activation (PANA) model could be tested at high levels of activation, where it is identical to the vector model. The results replicated when ratings of arousal were used instead of ratings of intensity for the events and autobiographical memories. A reanalysis of word norms gave further support for the vector and PANA models by demonstrating that neutral valence, high-arousal ratings resulted from the averaging of individual positive and negative valence ratings. Thus, compared to a circumplex model, vector and PANA models provided overall better fits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala-calcarine (P=0.01) and amygdala-thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala-ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is an investigation into collimator designs for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact neutron imaging system that can be implemented in a hospital. The envisioned application is for a spectroscopic imaging technique called neutron stimulated emission computed tomography (NSECT).

Previous NSECT studies have been performed using a Van-de-Graaff accelerator at the Triangle Universities Nuclear Laboratory (TUNL) in Duke University. This facility has provided invaluable research into the development of NSECT. To transition the current imaging method into a clinically feasible system, there is a need for a high-intensity fast neutron source that can produce collimated beams. The DD neutron generator from Adelphi Technologies Inc. is being explored as a possible candidate to provide the uncollimated neutrons. This DD generator is a compact source that produces 2.5 MeV fast neutrons with intensities of 1012 n/s (4π). The neutron energy is sufficient to excite most isotopes of interest in the body with the exception of carbon and oxygen. However, a special collimator is needed to collimate the 4π neutron emission into a narrow beam. This work describes the development and evaluation of a series of collimator designs to collimate the DD generator for narrow beams suitable for NSECT imaging.

A neutron collimator made of high-density polyethylene (HDPE) and lead was modeled and simulated using the GEANT4 toolkit. The collimator was designed as a 52 x 52 x 52 cm3 HDPE block coupled with 1 cm lead shielding. Non-tapering (cylindrical) and tapering (conical) opening designs were modeled into the collimator to permit passage of neutrons. The shape, size, and geometry of the aperture were varied to assess the effects on the collimated neutron beam. Parameters varied were: inlet diameter (1-5 cm), outlet diameter (1-5 cm), aperture diameter (0.5-1.5 cm), and aperture placement (13-39 cm). For each combination of collimator parameters, the spatial and energy distributions of neutrons and gammas were tracked and analyzed to determine three performance parameters: neutron beam-width, primary neutron flux, and the output quality. To evaluate these parameters, the simulated neutron beams are then regenerated for a NSECT breast scan. Scan involved a realistic breast lesion implanted into an anthropomorphic female phantom.

This work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-collimated neutron beam that can be used for NSECT breast imaging. The aperture diameter showed a strong correlation to the beam-width, where the collimated neutron beam-width was about 10% larger than the physical aperture diameter. In addition, a collimator opening consisting of a tapering inlet and cylindrical outlet allowed greater neutron throughput when compared to a simple cylindrical opening. The tapering inlet design can allow additional neutron throughput when the neck is placed farther from the source. On the other hand, the tapering designs also decrease output quality (i.e. increase in stray neutrons outside the primary collimated beam). All collimators are cataloged in measures of beam-width, neutron flux, and output quality. For a particular NSECT application, an optimal choice should be based on the collimator specifications listed in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Duke Free-electron laser (FEL) system, driven by the Duke electron storage ring, has been at the forefront of developing new light source capabilities over the past two decades. In 1999, the Duke FEL demonstrated the first lasing of a storage ring FEL in the vacuum ultraviolet (VUV) region at $194$ nm using two planar OK-4 undulators. With two helical undulators added to the outboard sides of the planar undulators, in 2005 the highest FEL gain ($47.8\%$) of a storage ring FEL was achieved using the Duke FEL system with a four-undulator configuration. In addition, the Duke FEL has been used as the photon source to drive the High Intensity $\gamma$-ray Source (HIGS) via Compton scattering of the FEL beam and electron beam inside the FEL cavity. Taking advantage of FEL's wavelength tunability as well as the adjustability of the energy of the electron beam in the storage ring, the nearly monochromatic $\gamma$-ray beam has been produced in a wide energy range from $1$ to $100$ MeV at the HIGS. To further push the FEL short wavelength limit and enhance the FEL gain in the VUV regime for high energy $\gamma$-ray production, two additional helical undulators were installed in 2012 using an undulator switchyard system to allow switching between the two planar and two helical undulators in the middle section of the FEL system. Using different undulator configurations made possible by the switchyard, a number of novel capabilities of the storage ring FEL have been developed and exploited for a wide FEL wavelength range from infrared (IR) to VUV. These new capabilities will eventually be made available to the $\gamma$-ray operation, which will greatly enhance the $\gamma$-ray user research program, creating new opportunities for certain types of nuclear physics research.

With the wide wavelength tuning range, the FEL is an intrinsically well-suited device to produce lasing with multiple colors. Taking advantage of the availability of an undulator system with multiple undulators, we have demonstrated the first two-color lasing of a storage ring FEL. Using either a three- or four-undulator configuration with a pair of dual-band high reflectivity mirrors, we have achieved simultaneous lasing in the IR and UV spectral regions. With the low-gain feature of the storage ring FEL, the power generated at the two wavelengths can be equally built up and precisely balanced to reach FEL saturation. A systematic experimental program to characterize this two-color FEL has been carried out, including precise power control, a study of the power stability of two-color lasing, wavelength tuning, and the impact of the FEL mirror degradation. Using this two-color laser, we have started to develop a new two-color $\gamma$-ray beam for scientific research at the HIGS.

Using the undulator switchyard, four helical undulators installed in the beamline can be configured to not only enhance the FEL gain in the VUV regime, but also allow for the full polarization control of the FEL beams. For the accelerator operation, the use of helical undulators is essential to extend the FEL mirror lifetime by reducing radiation damage from harmonic undulator radiation. Using a pair of helical undulators with opposite helicities, we have realized (1) fast helicity switching between left- and right-circular polarizations, and (2) the generation of fully controllable linear polarization. In order to extend these new capabilities of polarization control to the $\gamma$-ray operation in a wide energy range at the HIGS, a set of FEL polarization diagnostic systems need to be developed to cover the entire FEL wavelength range. The preliminary development of the polarization diagnostics for the wavelength range from IR to UV has been carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.