4 resultados para Hexagonal boron nitride

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

III-Nitride materials have recently become a promising candidate for superior applications over the current technologies. However, certain issues such as lack of native substrates, and high defect density have to be overcome for further development of III-Nitride technology. This work presents research on lattice engineering of III-Nitride materials, and the structural, optical, and electrical properties of its alloys, in order to approach the ideal material for various applications. We demonstrated the non-destructive and quantitative characterization of composition modulated nanostructure in InAlN thin films with X-ray diffraction. We found the development of the nanostructure depends on growth temperature, and the composition modulation has impacts on carrier recombination dynamics. We also showed that the controlled relaxation of a very thin AlN buffer (20 ~ 30 nm) or a graded composition InGaN buffer can significantly reduce the defect density of a subsequent epitaxial layer. Finally, we synthesized an InAlGaN thin films and a multi-quantum-well structure. Significant emission enhancement in the UVB range (280 – 320 nm) was observed compared to AlGaN thin films. The nature of the enhancement was investigated experimentally and numerically, suggesting carrier confinement in the In localization centers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limit-periodic (LP) structures exhibit a type of nonperiodic order yet to be found in a natural material. A recent result in tiling theory, however, has shown that LP order can spontaneously emerge in a two-dimensional (2D) lattice model with nearest-and next-nearest-neighbor interactions. In this dissertation, we explore the question of what types of interactions can lead to a LP state and address the issue of whether the formation of a LP structure in experiments is possible. We study emergence of LP order in three-dimensional (3D) tiling models and bring the subject into the physical realm by investigating systems with realistic Hamiltonians and low energy LP states. Finally, we present studies of the vibrational modes of a simple LP ball and spring model whose results indicate that LP materials would exhibit novel physical properties.

A 2D lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar (TS) monotile is known to have a LP ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. Surprisingly, even when the strength of the next-nearest-neighbor interactions is zero, in which case there is a large degenerate class of both crystalline and LP ground states, a slow quench yields the LP state. The first study in this dissertation introduces 3D models closely related to the 2D models that exhibit LP phases. The particular 3D models were designed such that next-nearest-neighbor interactions of the TS type are implemented using only nearest-neighbor interactions. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case.

In the second study, we investigate systems with physical Hamiltonians based on one of the 2D tiling models with the goal of stimulating attempts to create a LP structure in experiments. We explore physically realizable particle designs while being mindful of particular features that may make the assembly of a LP structure in an experimental system difficult. Through Monte Carlo (MC) simulations, we have found that one particle design in particular is a promising template for a physical particle; a 2D system of identical disks with embedded dipoles is observed to undergo the series of phase transitions which leads to the LP state.

LP structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. In the third section of this dissertation, we study a ball and spring model with a LP pattern of spring stiffnesses and identify a set of extended modes with arbitrarily low participation ratios, a situation that appears to be unique to LP systems. The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice constants. By studying periodic approximants to the LP structure, we present numerical evidence for the existence of such modes, and we give a heuristic explanation of their structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C – 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that further improvements to the test apparatus and test conditions (for example, higher purity/cleanliness) may be necessary to optimize the boron deposition. Although alpha-rhombohedral boron crystals of large size were not achieved, this research was successful in (a) developing a pyrolysis apparatus and test procedure that can serve as a platform for future testing, (b) determining reaction temperatures at which alpha-rhombohedral boron can form, and (c) developing a consistent process for analyzing the boron deposits and determining their composition. Further experimentation is necessary to achieve a pyrolysis apparatus and test procedure that can yield large alpha-rhombohedral boron crystals with consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The national shortage of helium-3 has made it critical to develop an alternative to helium-3 neutron detectors. Boron-10, if it could be produced in macroscopic alpha-rhombohedral crystalline form, would be a viable alternative to helium-3. This work has determined the critical parameters needed for the preparation of alpha-rhombohedral boron by the pyrolytic decomposition of boron tribromide on tantalum wire. The primary parameters that must be met are wire temperature and feedstock purity. The minimum purity level for boron tribromide was determined to be 99.999% and it has been found that alpha-rhombohedral boron cannot be produced using 99.99% boron tribromide. The decomposition temperature was experimentally tested between 830°C and 1000°C. Alpha-rhombohedral boron was found at temperatures between 950°C and 1000°C using 99.999% pure boron tribromide.