5 resultados para Heterogeneous Educational Backgrounds
em Duke University
Resumo:
BACKGROUND: Few educational resources have been developed to inform patients' renal replacement therapy (RRT) selection decisions. Patients progressing toward end stage renal disease (ESRD) must decide among multiple treatment options with varying characteristics. Complex information about treatments must be adequately conveyed to patients with different educational backgrounds and informational needs. Decisions about treatment options also require family input, as families often participate in patients' treatment and support patients' decisions. We describe the development, design, and preliminary evaluation of an informational, evidence-based, and patient-and family-centered decision aid for patients with ESRD and varying levels of health literacy, health numeracy, and cognitive function. METHODS: We designed a decision aid comprising a complementary video and informational handbook. We based our development process on data previously obtained from qualitative focus groups and systematic literature reviews. We simultaneously developed the video and handbook in "stages." For the video, stages included (1) directed interviews with culturally appropriate patients and families and preliminary script development, (2) video production, and (3) screening the video with patients and their families. For the handbook, stages comprised (1) preliminary content design, (2) a mixed-methods pilot study among diverse patients to assess comprehension of handbook material, and (3) screening the handbook with patients and their families. RESULTS: The video and handbook both addressed potential benefits and trade-offs of treatment selections. The 50-minute video consisted of demographically diverse patients and their families describing their positive and negative experiences with selecting a treatment option. The video also incorporated health professionals' testimonials regarding various considerations that might influence patients' and families' treatment selections. The handbook was comprised of written words, pictures of patients and health care providers, and diagrams describing the findings and quality of scientific studies comparing treatments. The handbook text was written at a 4th to 6th grade reading level. Pilot study results demonstrated that a majority of patients could understand information presented in the handbook. Patient and families screening the nearly completed video and handbook reviewed the materials favorably. CONCLUSIONS: This rigorously designed decision aid may help patients and families make informed decisions about their treatment options for RRT that are well aligned with their values.
Resumo:
As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.
Resumo:
In recent years, the storage and use of residual newborn screening (NBS) samples has gained attention. To inform ongoing policy discussions, this article provides an update of previous work on new policies, educational materials, and parental options regarding the storage and use of residual NBS samples. A review of state NBS Web sites was conducted for information related to the storage and use of residual NBS samples in January 2010. In addition, a review of current statutes and bills introduced between 2005 and 2009 regarding storage and/or use of residual NBS samples was conducted. Fourteen states currently provide information about the storage and/or use of residual NBS samples. Nine states provide parents the option to request destruction of the residual NBS sample after the required storage period or the option to exclude the sample for research uses. In the coming years, it is anticipated that more states will consider policies to address parental concerns about the storage and use of residual NBS samples. Development of new policies regarding storage and use of residual NBS samples will require careful consideration of impact on NBS programs, parent and provider educational materials, and respect for parents among other issues.
Resumo:
The transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.