3 resultados para Heráclio, Imperador Bizantino, ca. 575-641
em Duke University
Resumo:
We developed a high-throughput yeast-based assay to screen for chemical inhibitors of Ca(2+)/calmodulin-dependent kinase pathways. After screening two small libraries, we identified the novel antagonist 125-C9, a substituted ethyleneamine. In vitro kinase assays confirmed that 125-C9 inhibited several calmodulin-dependent kinases (CaMKs) competitively with Ca(2+)/calmodulin (Ca(2+)/CaM). This suggested that 125-C9 acted as an antagonist for Ca(2+)/CaM rather than for CaMKs. We confirmed this hypothesis by showing that 125-C9 binds directly to Ca(2+)/CaM using isothermal titration calorimetry. We further characterized binding of 125-C9 to Ca(2+)/CaM and compared its properties with those of two well-studied CaM antagonists: trifluoperazine (TFP) and W-13. Isothermal titration calorimetry revealed that binding of 125-C9 to CaM is absolutely Ca(2+)-dependent, likely occurs with a stoichiometry of five 125-C9 molecules to one CaM molecule, and involves an exchange of two protons at pH 7.0. Binding of 125-C9 is driven overall by entropy and appears to be competitive with TFP and W-13, which is consistent with occupation of similar binding sites. To test the effects of 125-C9 in living cells, we evaluated mitogen-stimulated re-entry of quiescent cells into proliferation and found similar, although slightly better, levels of inhibition by 125-C9 than by TFP and W-13. Our results not only define a novel Ca(2+)/CaM inhibitor but also reveal that chemically unique CaM antagonists can bind CaM by distinct mechanisms but similarly inhibit cellular actions of CaM.
Resumo:
BACKGROUND: Invasive fungal infections (IFIs) are a major cause of morbidity and mortality among organ transplant recipients. Multicenter prospective surveillance data to determine disease burden and secular trends are lacking. METHODS: The Transplant-Associated Infection Surveillance Network (TRANSNET) is a consortium of 23 US transplant centers, including 15 that contributed to the organ transplant recipient dataset. We prospectively identified IFIs among organ transplant recipients from March, 2001 through March, 2006 at these sites. To explore trends, we calculated the 12-month cumulative incidence among 9 sequential cohorts. RESULTS: During the surveillance period, 1208 IFIs were identified among 1063 organ transplant recipients. The most common IFIs were invasive candidiasis (53%), invasive aspergillosis (19%), cryptococcosis (8%), non-Aspergillus molds (8%), endemic fungi (5%), and zygomycosis (2%). Median time to onset of candidiasis, aspergillosis, and cryptococcosis was 103, 184, and 575 days, respectively. Among a cohort of 16,808 patients who underwent transplantation between March 2001 and September 2005 and were followed through March 2006, a total of 729 IFIs were reported among 633 persons. One-year cumulative incidences of the first IFI were 11.6%, 8.6%, 4.7%, 4.0%, 3.4%, and 1.3% for small bowel, lung, liver, heart, pancreas, and kidney transplant recipients, respectively. One-year incidence was highest for invasive candidiasis (1.95%) and aspergillosis (0.65%). Trend analysis showed a slight increase in cumulative incidence from 2002 to 2005. CONCLUSIONS: We detected a slight increase in IFIs during the surveillance period. These data provide important insights into the timing and incidence of IFIs among organ transplant recipients, which can help to focus effective prevention and treatment strategies.