5 resultados para Hemodynamics, Intermittent Positive-Pressure Ventilation

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a reflector insert, the original HM-3 lithotripter field at 20 kV was altered significantly with the peak positive pressure (p(+)) in the focal plane increased from 49 to 87 MPa while the -6 dB focal width decreased concomitantly from 11 to 4 mm. Using the original reflector, p(+) of 33 MPa with a -6 dB focal width of 18 mm were measured in a pre-focal plane 15-mm proximal to the lithotripter focus. However, the acoustic pulse energy delivered to a 28-mm diameter area around the lithotripter axis was comparable ( approximately 120 mJ). For all three exposure conditions, similar stone comminution ( approximately 70%) was produced in a mesh holder of 15 mm after 250 shocks. In contrast, stone comminution produced by the modified reflector either in a 15-mm finger cot (45%) or in a 30-mm membrane holder (14%) was significantly reduced from the corresponding values (56% and 26%) produced by the original reflector (no statistically significant differences were observed between the focal and pre-focal planes). These observations suggest that a low-pressure/broad focal width lithotripter field will produce better stone comminution than its counterpart with high-pressure/narrow focal width under clinically relevant in vitro comminution conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Stimulation of beta(1)- and beta(2)-adrenergic receptors (ARs) in the heart results in positive inotropy. In contrast, it has been reported that the beta(3)AR is also expressed in the human heart and that its stimulation leads to negative inotropic effects. METHODS AND RESULTS: To better understand the role of beta(3)ARs in cardiac function, we generated transgenic mice with cardiac-specific overexpression of 330 fmol/mg protein of the human beta(3)AR (TGbeta(3) mice). Hemodynamic characterization was performed by cardiac catheterization in closed-chest anesthetized mice, by pressure-volume-loop analysis, and by echocardiography in conscious mice. After propranolol blockade of endogenous beta(1)- and beta(2)ARs, isoproterenol resulted in an increase in contractility in the TGbeta(3) mice (30%), with no effect in wild-type mice. Similarly, stimulation with the selective human beta(3)AR agonist L-755,507 significantly increased contractility in the TGbeta(3) mice (160%), with no effect in wild-type mice, as determined by hemodynamic measurements and by end-systolic pressure-volume relations. The underlying mechanism of the positive inotropy incurred with L-755,507 in the TGbeta(3) mice was investigated in terms of beta(3)AR-G-protein coupling and adenylyl cyclase activation. Stimulation of cardiac membranes from TGbeta(3) mice with L-755,507 resulted in a pertussis toxin-insensitive 1.33-fold increase in [(35)S]GTPgammaS loading and a 1.6-fold increase in adenylyl cyclase activity. CONCLUSIONS: Cardiac overexpression of human beta(3)ARs results in positive inotropy only on stimulation with a beta(3)AR agonist. Overexpressed beta(3)ARs couple to G(s) and activate adenylyl cyclase on agonist stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational fluid dynamic (CFD) studies of blood flow in cerebrovascular aneurysms have potential to improve patient treatment planning by enabling clinicians and engineers to model patient-specific geometries and compute predictors and risks prior to neurovascular intervention. However, the use of patient-specific computational models in clinical settings is unfeasible due to their complexity, computationally intensive and time-consuming nature. An important factor contributing to this challenge is the choice of outlet boundary conditions, which often involves a trade-off between physiological accuracy, patient-specificity, simplicity and speed. In this study, we analyze how resistance and impedance outlet boundary conditions affect blood flow velocities, wall shear stresses and pressure distributions in a patient-specific model of a cerebrovascular aneurysm. We also use geometrical manipulation techniques to obtain a model of the patient’s vasculature prior to aneurysm development, and study how forces and stresses may have been involved in the initiation of aneurysm growth. Our CFD results show that the nature of the prescribed outlet boundary conditions is not as important as the relative distributions of blood flow through each outlet branch. As long as the appropriate parameters are chosen to keep these flow distributions consistent with physiology, resistance boundary conditions, which are simpler, easier to use and more practical than their impedance counterparts, are sufficient to study aneurysm pathophysiology, since they predict very similar wall shear stresses, time-averaged wall shear stresses, time-averaged pressures, and blood flow patterns and velocities. The only situations where the use of impedance boundary conditions should be prioritized is if pressure waveforms are being analyzed, or if local pressure distributions are being evaluated at specific time points, especially at peak systole, where the use of resistance boundary conditions leads to unnaturally large pressure pulses. In addition, we show that in this specific patient, the region of the blood vessel where the neck of the aneurysm developed was subject to abnormally high wall shear stresses, and that regions surrounding blebs on the aneurysmal surface were subject to low, oscillatory wall shear stresses. Computational models using resistance outlet boundary conditions may be suitable to study patient-specific aneurysm progression in a clinical setting, although several other challenges must be addressed before these tools can be applied clinically.