2 resultados para Heat of hydration.
em Duke University
Resumo:
This paper proposes that atherosclerosis is initiated by a signaling event that deposits calcium hydroxyapatite (Ca-HAP). This event is preceded by a loss of mechanical structure in the arterial wall. After Ca-HAP has been deposited, it is unlikely that it will be reabsorbed because the solubility product constant (K sp) is very small, and the large stores of Ca +2 and PO 4-3 in the bones oppose any attempts to dissolve Ca-HAP by decreasing the common ions. The hydroxide ion (OH -) of Ca-HAP can be displaced in nature by fluoride (F -) and carbonate (CO 3-2) ions, and it is proposed that anions associated with cholesterol ester hydrolysis and, in very small quantities, the enolate of 7-ketocholesterol could also displace the OH -of Ca-HAP, forming an ionic bond. The free energy of hydration of Ca-HAP at 310 K is most likely negative, and the ionic radii of the anions associated with the hydrolysis of cholesterol ester are compatible with the substitution. Furthermore, examination of the pathology of atherosclerotic lesions by Raman and NMR spectroscopy and confocal microscopy supports deposition of Ca-HAP associated with cholesterol. Investigating the affinity of intermediates of cholesterol hydrolysis for Ca-HAP compared to lipoproteins such as HDL, LDL, and VLDL using isothermic titration calorimetry could add proof of this concept and may lead to the development of a new class of medications targeted at the deposition of cholesterol within Ca-HAP. Treatment of acute ischemic events as a consequence of atherosclerosis with denitrogenation and oxygenation is discussed. © the author(s), publisher and licensee Libertas Academica Ltd.
Resumo:
Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.