4 resultados para Halbach array
em Duke University
Resumo:
The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.
Resumo:
Our long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using intravascular ultrasound (IVUS) catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich necrotic core is a precursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beamwidths for intravascular hyperthermia applications. In this paper, we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short-circuiting portions of the array for acoustic radiation force impulse imaging (ARFI) applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm, respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young's modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1 to 2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intravascular ARFI may be feasible.
Resumo:
The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.
In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.
In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.
The research described in Chapter 2 is published in 2014.