1 resultado para Graph DBMS, BenchMarking, OLAP, NoSQL
em Duke University
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (31)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (7)
- Aston University Research Archive (40)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (39)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (83)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CentAUR: Central Archive University of Reading - UK (31)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Georgian Library Association, Georgia (2)
- Greenwich Academic Literature Archive - UK (1)
- Instituto Politécnico do Porto, Portugal (34)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (197)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- Nottingham eTheses (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (30)
- Repositório da Escola Nacional de Administração Pública (ENAP) (4)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de El Salvador (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Repositorio Institucional Universidad Católica de Colombia (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (51)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (7)
- Scielo Uruguai (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (21)
- Universidade Federal do Rio Grande do Norte (UFRN) (21)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (10)
- Université de Montréal (1)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (11)
- University of Queensland eSpace - Australia (87)
- University of Southampton, United Kingdom (7)
- University of Washington (2)
Resumo:
This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.
The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.
Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.