2 resultados para Global justice movement

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Claims of injustice in global forest governance are prolific: assertions of colonization, marginalization and disenfranchisement of forest-dependent people, and privatization of common resources are some of the most severe allegations of injustice resulting from globally-driven forest conservation initiatives. At its core, the debate over the future of the world's forests is fraught with ethical concerns. Policy makers are not only deciding how forests should be governed, but also who will be winners, losers, and who should have a voice in the decision-making processes. For 30 years, policy makers have sought to redress the concerns of the world's 1.6 billion forest-dependent poor by introducing rights-based and participatory approaches to conservation. Despite these efforts, however, claims of injustice persist. This research examines possible explanations for continued claims of injustice by asking: What are the barriers to delivering justice to forest-dependent communities? Using data collected through surveys, interviews, and collaborative event ethnography in Laos and at the Tenth Conference of Parties to the Convention on Biological Diversity, this dissertation examines the pursuit of justice in global forest governance across multiple scales of governance. The findings reveal that particular conceptualizations of justice have become a central part of the metanormative fabric of global environmental governance, inhibiting institutional evolution and therewith perpetuating the justice gap in global forest governance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.