4 resultados para Global Warming Potential
em Duke University
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.
Resumo:
The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.
As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.
To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.
To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.
Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.
The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.
Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.
Resumo:
BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
Resumo:
Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.
The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.
I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.
I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.
Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.
In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.