2 resultados para Generative programming

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is

hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation

sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand,

DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.

The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They

were interesting because they bring to the table an on-demand energy/information supply mechanism.

The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.

The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.

The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.

The hidden energy and information coupled with

programmability provides another functionality, of selectively choosing what reactions to hide and

what reactions to allow to proceed, that helps develop a topological sequence of events.

Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different

molecular devices using DNA hairpins, and experimentally validate them in the

laboratory. 1) The first device: A

novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second

device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct

regardless of differences in the arrival time of different inputs.

b) renewable circuits which can be used multiple times without major degradation of the gate motifs

(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).

3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances

its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly.

4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification

of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite

amount of gain.

Nucleic acid circuits with the ability

to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.

We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome

to make these truly functional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the popularization of GPS-enabled devices such as mobile phones, location data are becoming available at an unprecedented scale. The locations may be collected from many different sources such as vehicles moving around a city, user check-ins in social networks, and geo-tagged micro-blogging photos or messages. Besides the longitude and latitude, each location record may also have a timestamp and additional information such as the name of the location. Time-ordered sequences of these locations form trajectories, which together contain useful high-level information about people's movement patterns.

The first part of this thesis focuses on a few geometric problems motivated by the matching and clustering of trajectories. We first give a new algorithm for computing a matching between a pair of curves under existing models such as dynamic time warping (DTW). The algorithm is more efficient than standard dynamic programming algorithms both theoretically and practically. We then propose a new matching model for trajectories that avoids the drawbacks of existing models. For trajectory clustering, we present an algorithm that computes clusters of subtrajectories, which correspond to common movement patterns. We also consider trajectories of check-ins, and propose a statistical generative model, which identifies check-in clusters as well as the transition patterns between the clusters.

The second part of the thesis considers the problem of covering shortest paths in a road network, motivated by an EV charging station placement problem. More specifically, a subset of vertices in the road network are selected to place charging stations so that every shortest path contains enough charging stations and can be traveled by an EV without draining the battery. We first introduce a general technique for the geometric set cover problem. This technique leads to near-linear-time approximation algorithms, which are the state-of-the-art algorithms for this problem in either running time or approximation ratio. We then use this technique to develop a near-linear-time algorithm for this

shortest-path cover problem.