3 resultados para Generalized Basic Hypergeometric Functions
em Duke University
Resumo:
Behavior, neuropsychology, and neuroimaging suggest that episodic memories are constructed from interactions among the following basic systems: vision, audition, olfaction, other senses, spatial imagery, language, emotion, narrative, motor output, explicit memory, and search and retrieval. Each system has its own well-documented functions, neural substrates, processes, structures, and kinds of schemata. However, the systems have not been considered as interacting components of episodic memory, as is proposed here. Autobiographical memory and oral traditions are used to demonstrate the usefulness of the basic-systems model in accounting for existing data and predicting novel findings, and to argue that the model, or one similar to it, is the only way to understand episodic memory for complex stimuli routinely encountered outside the laboratory.
Resumo:
Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we extend mixtures of g-priors to GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1+g) and illustrate how this prior distribution encompasses several special cases of mixtures of g-priors in the literature, such as the Hyper-g, truncated Gamma, Beta-prime, and the Robust prior. Under an integrated Laplace approximation to the likelihood, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically. We discuss the local geometric properties of the g-prior in GLMs and show that specific choices of the hyper-parameters satisfy the various desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, information consistency, intrinsic consistency, and measurement invariance. We also illustrate inference using these priors and contrast them to others in the literature via simulation and real examples.
Resumo:
TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.