11 resultados para Game strategies
em Duke University
Resumo:
Allocating resources optimally is a nontrivial task, especially when multiple
self-interested agents with conflicting goals are involved. This dissertation
uses techniques from game theory to study two classes of such problems:
allocating resources to catch agents that attempt to evade them, and allocating
payments to agents in a team in order to stabilize it. Besides discussing what
allocations are optimal from various game-theoretic perspectives, we also study
how to efficiently compute them, and if no such algorithms are found, what
computational hardness results can be proved.
The first class of problems is inspired by real-world applications such as the
TOEFL iBT test, course final exams, driver's license tests, and airport security
patrols. We call them test games and security games. This dissertation first
studies test games separately, and then proposes a framework of Catcher-Evader
games (CE games) that generalizes both test games and security games. We show
that the optimal test strategy can be efficiently computed for scored test
games, but it is hard to compute for many binary test games. Optimal Stackelberg
strategies are hard to compute for CE games, but we give an empirically
efficient algorithm for computing their Nash equilibria. We also prove that the
Nash equilibria of a CE game are interchangeable.
The second class of problems involves how to split a reward that is collectively
obtained by a team. For example, how should a startup distribute its shares, and
what salary should an enterprise pay to its employees. Several stability-based
solution concepts in cooperative game theory, such as the core, the least core,
and the nucleolus, are well suited to this purpose when the goal is to avoid
coalitions of agents breaking off. We show that some of these solution concepts
can be justified as the most stable payments under noise. Moreover, by adjusting
the noise models (to be arguably more realistic), we obtain new solution
concepts including the partial nucleolus, the multiplicative least core, and the
multiplicative nucleolus. We then study the computational complexity of those
solution concepts under the constraint of superadditivity. Our result is based
on what we call Small-Issues-Large-Team games and it applies to popular
representation schemes such as MC-nets.
Resumo:
We conduct the first empirical investigation of common-pool resource users' dynamic and strategic behavior at the micro level using real-world data. Fishermen's strategies in a fully dynamic game account for latent resource dynamics and other players' actions, revealing the profit structure of the fishery. We compare the fishermen's actual and socially optimal exploitation paths under a time-specific vessel allocation policy and find a sizable dynamic externality. Individual fishermen respond to other users by exerting effort above the optimal level early in the season. Congestion is costly instantaneously but is beneficial in the long run because it partially offsets dynamic inefficiencies.
Resumo:
The effectiveness of vaccinating males against the human papillomavirus (HPV) remains a controversial subject. Many existing studies conclude that increasing female coverage is more effective than diverting resources into male vaccination. Recently, several empirical studies on HPV immunization have been published, providing evidence of the fact that marginal vaccination costs increase with coverage. In this study, we use a stochastic agent-based modeling framework to revisit the male vaccination debate in light of these new findings. Within this framework, we assess the impact of coverage-dependent marginal costs of vaccine distribution on optimal immunization strategies against HPV. Focusing on the two scenarios of ongoing and new vaccination programs, we analyze different resource allocation policies and their effects on overall disease burden. Our results suggest that if the costs associated with vaccinating males are relatively close to those associated with vaccinating females, then coverage-dependent, increasing marginal costs may favor vaccination strategies that entail immunization of both genders. In particular, this study emphasizes the necessity for further empirical research on the nature of coverage-dependent vaccination costs.
Resumo:
The rivalry between the men's basketball teams of Duke University and the University of North Carolina-Chapel Hill (UNC) is one of the most storied traditions in college sports. A subculture of students at each university form social bonds with fellow fans, develop expertise in college basketball rules, team statistics, and individual players, and self-identify as a member of a fan group. The present study capitalized on the high personal investment of these fans and the strong affective tenor of a Duke-UNC basketball game to examine the neural correlates of emotional memory retrieval for a complex sporting event. Male fans watched a competitive, archived game in a social setting. During a subsequent functional magnetic resonance imaging session, participants viewed video clips depicting individual plays of the game that ended with the ball being released toward the basket. For each play, participants recalled whether or not the shot went into the basket. Hemodynamic signal changes time locked to correct memory decisions were analyzed as a function of emotional intensity and valence, according to the fan's perspective. Results showed intensity-modulated retrieval activity in midline cortical structures, sensorimotor cortex, the striatum, and the medial temporal lobe, including the amygdala. Positively valent memories specifically recruited processing in dorsal frontoparietal regions, and additional activity in the insula and medial temporal lobe for positively valent shots recalled with high confidence. This novel paradigm reveals how brain regions implicated in emotion, memory retrieval, visuomotor imagery, and social cognition contribute to the recollection of specific plays in the mind of a sports fan.
Resumo:
Scheduling a set of jobs over a collection of machines to optimize a certain quality-of-service measure is one of the most important research topics in both computer science theory and practice. In this thesis, we design algorithms that optimize {\em flow-time} (or delay) of jobs for scheduling problems that arise in a wide range of applications. We consider the classical model of unrelated machine scheduling and resolve several long standing open problems; we introduce new models that capture the novel algorithmic challenges in scheduling jobs in data centers or large clusters; we study the effect of selfish behavior in distributed and decentralized environments; we design algorithms that strive to balance the energy consumption and performance.
The technically interesting aspect of our work is the surprising connections we establish between approximation and online algorithms, economics, game theory, and queuing theory. It is the interplay of ideas from these different areas that lies at the heart of most of the algorithms presented in this thesis.
The main contributions of the thesis can be placed in one of the following categories.
1. Classical Unrelated Machine Scheduling: We give the first polygorithmic approximation algorithms for minimizing the average flow-time and minimizing the maximum flow-time in the offline setting. In the online and non-clairvoyant setting, we design the first non-clairvoyant algorithm for minimizing the weighted flow-time in the resource augmentation model. Our work introduces iterated rounding technique for the offline flow-time optimization, and gives the first framework to analyze non-clairvoyant algorithms for unrelated machines.
2. Polytope Scheduling Problem: To capture the multidimensional nature of the scheduling problems that arise in practice, we introduce Polytope Scheduling Problem (\psp). The \psp problem generalizes almost all classical scheduling models, and also captures hitherto unstudied scheduling problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional resource allocation. We design several competitive algorithms for the \psp problem and its variants for the objectives of minimizing the flow-time and completion time. Our work establishes many interesting connections between scheduling and market equilibrium concepts, fairness and non-clairvoyant scheduling, and queuing theoretic notion of stability and resource augmentation analysis.
3. Energy Efficient Scheduling: We give the first non-clairvoyant algorithm for minimizing the total flow-time + energy in the online and resource augmentation model for the most general setting of unrelated machines.
4. Selfish Scheduling: We study the effect of selfish behavior in scheduling and routing problems. We define a fairness index for scheduling policies called {\em bounded stretch}, and show that for the objective of minimizing the average (weighted) completion time, policies with small stretch lead to equilibrium outcomes with small price of anarchy. Our work gives the first linear/ convex programming duality based framework to bound the price of anarchy for general equilibrium concepts such as coarse correlated equilibrium.
Resumo:
Adult body size is controlled by the mechanisms that stop growth when a species-characteristic size has been reached. The mechanisms by which size is sensed and by which this information is transduced to the growth regulating system are beginning to be understood in a few species of insects. Two rather different strategies for control have been discovered; one favors large body size and the other favors rapid development.
Resumo:
© 2014, The International Biometric Society.A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment strategies by incorporating patient level predictor information such as environmental exposure, biological, and genetic marker measurements. Many useful statistical methods for deriving individualized treatment rules (ITR) have become available in recent years. Prior to adopting any ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing methods for quantifying such values mainly consider either a single marker or semi-parametric methods that are subject to bias under model misspecification. In this article, we consider a general setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate their values. We also propose procedures for comparing different ITRs, which can be used to quantify the incremental value of new markers in improving treatment selection. While working models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard against model misspecification and further assess the value of the ITR non-parametrically, which ensures the validity of the inference. To account for the sampling variability of the estimated rules and their corresponding values, we propose a resampling procedure to provide valid confidence intervals for the value functions as well as for the incremental value of new markers for treatment selection. Our proposals are examined through extensive simulation studies and illustrated with the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected patients.
Resumo:
The apparel industry is one of the oldest and largest export industries in the world, with global trade and production networks that connect firms and workers in countries at all levels of economic development. This chapter examines the impact of the North American Free Trade Agreement (NAFTA) as one of the most recent and significant developments to affect patterns of international trade and production in the apparel and textile industries. Tr ade policies are changing the institutional environment in which firms in this industry operate, and companies are responding to these changes with new strategies designed to increase their profitability and strengthen their control over the apparel commodity chain. Our hypothesis is that lead firms are establishing qualitatively different kinds of regional production networks in North America from those that existed prior to NAFTA, and that these networks have important consequences for industrial upgrading in the Mexican textile and apparel industries. Post-NAFTA crossborder production arrangements include full-package networks that link lead firms in the United States with apparel and textile manufacturers, contractors, and suppliers in Mexico. Full-package production is increasing the local value added provided by the apparel commodity chain in Mexico and creating new opportunities for Mexican firms and workers. The chapter is divided into four main sections. The first section uses trade and production data to analyze shifts in global apparel flows, highlighting the emergence and consolidation of a regional trade bloc in North America. The second section discusses the process of industrial upgrading in the apparel industry and introduces a distinction between assembly and full-package production networks. The third section includes case studies based on published industry sources and strategic interviews with several lead companies whose strategies are largely responsible for the shifting trade patterns and NAFTA-inspired cross-border production networks discussed in the previous section. The fourth section considers the implications of these changes for employment in the North American apparel industry. © 2009 by Temple University Press. All rights reserved.
Resumo:
OBJECTIVE: To assess potential diagnostic and practice barriers to successful management of massive postpartum hemorrhage (PPH), emphasizing recognition and management of contributing coagulation disorders. STUDY DESIGN: A quantitative survey was conducted to assess practice patterns of US obstetrician-gynecologists in managing massive PPH, including assessment of coagulation. RESULTS: Nearly all (98%) of the 50 obstetrician-gynecologists participating in the survey reported having encountered at least one patient with "massive" PPH in the past 5 years. Approximately half (52%) reported having previously discovered an underlying bleeding disorder in a patient with PPH, with disseminated intravascular coagulation (88%, n=23/26) being identified more often than von Willebrand disease (73%, n=19/26). All reported having used methylergonovine and packed red blood cells in managing massive PPH, while 90% reported performing a hysterectomy. A drop in blood pressure and ongoing visible bleeding were the most commonly accepted indications for rechecking a "stat" complete blood count and coagulation studies, respectively, in patients with PPH; however, 4% of respondents reported that they would not routinely order coagulation studies. Forty-two percent reported having never consulted a hematologist for massive PPH. CONCLUSION: The survey findings highlight potential areas for improved practice in managing massive PPH, including earlier and more consistent assessment, monitoring of coagulation studies, and consultation with a hematologist.
Resumo:
CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.