3 resultados para GAS-SOURCE MBE

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lateral on-chip electron-impact ion source utilizing a carbon nanotube field emission electron source was fabricated and characterized. The device consists of a cathode with aligned carbon nanotubes, a control grid, and an ion collector electrode. The electron-impact ionization of He, Ar, and Xe was studied as a function of field emission current and pressure. The ion current was linear with respect to gas pressure from 10-4 to 10-1 Torr. The device can operate as a vacuum ion gauge with a sensitivity of approximately 1 Torr-1. Ion currents in excess of 1 μA were generated. © 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.