6 resultados para Functional network

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.

In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.

Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.

Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.

Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.

To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.

The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.

This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding of the impact of combinations of material formulation parameters on diverse and competing functional outcomes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from crosslinked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes. Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest changes in metabolite consumption or production, and highest histological scores, indicating that the network was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.