3 resultados para Fowler-Nordheim

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background.  The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods.  We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results.  There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions.  The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE: Limitations in methods for the rapid diagnosis of hospital-acquired infections often delay initiation of effective antimicrobial therapy. New diagnostic approaches offer potential clinical and cost-related improvements in the management of these infections. OBJECTIVES: We developed a decision modeling framework to assess the potential cost-effectiveness of a rapid biomarker assay to identify hospital-acquired infection in high-risk patients earlier than standard diagnostic testing. METHODS: The framework includes parameters representing rates of infection, rates of delayed appropriate therapy, and impact of delayed therapy on mortality, along with assumptions about diagnostic test characteristics and their impact on delayed therapy and length of stay. Parameter estimates were based on contemporary, published studies and supplemented with data from a four-site, observational, clinical study. Extensive sensitivity analyses were performed. The base-case analysis assumed 17.6% of ventilated patients and 11.2% of nonventilated patients develop hospital-acquired infection and that 28.7% of patients with hospital-acquired infection experience delays in appropriate antibiotic therapy with standard care. We assumed this percentage decreased by 50% (to 14.4%) among patients with true-positive results and increased by 50% (to 43.1%) among patients with false-negative results using a hypothetical biomarker assay. Cost of testing was set at $110/d. MEASUREMENTS AND MAIN RESULTS: In the base-case analysis, among ventilated patients, daily diagnostic testing starting on admission reduced inpatient mortality from 12.3 to 11.9% and increased mean costs by $1,640 per patient, resulting in an incremental cost-effectiveness ratio of $21,389 per life-year saved. Among nonventilated patients, inpatient mortality decreased from 7.3 to 7.1% and costs increased by $1,381 with diagnostic testing. The resulting incremental cost-effectiveness ratio was $42,325 per life-year saved. Threshold analyses revealed the probabilities of developing hospital-acquired infection in ventilated and nonventilated patients could be as low as 8.4 and 9.8%, respectively, to maintain incremental cost-effectiveness ratios less than $50,000 per life-year saved. CONCLUSIONS: Development and use of serial diagnostic testing that reduces the proportion of patients with delays in appropriate antibiotic therapy for hospital-acquired infections could reduce inpatient mortality. The model presented here offers a cost-effectiveness framework for future test development.