9 resultados para Fowler
em Duke University
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
OBJECTIVE: To determine the epidemiological characteristics of postoperative invasive Staphylococcus aureus infection following 4 types of major surgical procedures.design. Retrospective cohort study. SETTING: Eleven hospitals (9 community hospitals and 2 tertiary care hospitals) in North Carolina and Virginia. PATIENTS: Adults undergoing orthopedic, neurosurgical, cardiothoracic, and plastic surgical procedures. METHODS: We used previously validated, prospectively collected surgical surveillance data for surgical site infection and microbiological data for bloodstream infection. The study period was 2003 through 2006. We defined invasive S. aureus infection as either nonsuperficial incisional surgical site infection or bloodstream infection. Nonparametric bootstrapping was used to generate 95% confidence intervals (CIs). P values were generated using the Pearson chi2 test, Student t test, or Wilcoxon rank-sum test, as appropriate. RESULTS: In total, 81,267 patients underwent 96,455 procedures during the study period. The overall incidence of invasive S. aureus infection was 0.47 infections per 100 procedures (95% CI, 0.43-0.52); 227 (51%) of 446 infections were due to methicillin-resistant S.aureus. Invasive S. aureus infection was more common after cardiothoracic procedures (incidence, 0.79 infections per 100 procedures [95%CI, 0.62-0.97]) than after orthopedic procedures (0.37 infections per 100 procedures [95% CI, 0.32-0.42]), neurosurgical procedures (0.62 infections per 100 procedures [95% CI, 0.53-0.72]), or plastic surgical procedures (0.32 infections per 100 procedures [95% CI, 0.17-0.47]) (P < .001). Similarly, S. aureus bloodstream infection was most common after cardiothoracic procedures (incidence, 0.57 infections per 100 procedures [95% CI, 0.43-0.72]; P < .001, compared with other procedure types), comprising almost three-quarters of the invasive S. aureus infections after these procedures. The highest rate of surgical site infection was observed after neurosurgical procedures (incidence, 0.50 infections per 100 procedures [95% CI, 0.42-0.59]; P < .001, compared with other procedure types), comprising 80% of invasive S.aureus infections after these procedures. CONCLUSION: The frequency and type of postoperative invasive S. aureus infection varied significantly across procedure types. The highest risk procedures, such as cardiothoracic procedures, should be targeted for ongoing preventative interventions.
Resumo:
Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N(2) backcross mice (F(1) [C18A]xC57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus-challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 beta and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies.
Resumo:
Malaria and other vector-borne diseases represent a significant and growing burden in many tropical countries. Successfully addressing these threats will require policies that expand access to and use of existing control methods, such as insecticide-treated bed nets (ITNs) and artemesinin combination therapies (ACTs) for malaria, while weighing the costs and benefits of alternative approaches over time. This paper argues that decision analysis provides a valuable framework for formulating such policies and combating the emergence and re-emergence of malaria and other diseases. We outline five challenges that policy makers and practitioners face in the struggle against malaria, and demonstrate how decision analysis can help to address and overcome these challenges. A prototype decision analysis framework for malaria control in Tanzania is presented, highlighting the key components that a decision support tool should include. Developing and applying such a framework can promote stronger and more effective linkages between research and policy, ultimately helping to reduce the burden of malaria and other vector-borne diseases.
Resumo:
Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
Resumo:
BACKGROUND: The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS: Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS: Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.
Resumo:
Background. The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods. We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results. There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions. The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.
Resumo:
Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.
Resumo:
RATIONALE: Limitations in methods for the rapid diagnosis of hospital-acquired infections often delay initiation of effective antimicrobial therapy. New diagnostic approaches offer potential clinical and cost-related improvements in the management of these infections. OBJECTIVES: We developed a decision modeling framework to assess the potential cost-effectiveness of a rapid biomarker assay to identify hospital-acquired infection in high-risk patients earlier than standard diagnostic testing. METHODS: The framework includes parameters representing rates of infection, rates of delayed appropriate therapy, and impact of delayed therapy on mortality, along with assumptions about diagnostic test characteristics and their impact on delayed therapy and length of stay. Parameter estimates were based on contemporary, published studies and supplemented with data from a four-site, observational, clinical study. Extensive sensitivity analyses were performed. The base-case analysis assumed 17.6% of ventilated patients and 11.2% of nonventilated patients develop hospital-acquired infection and that 28.7% of patients with hospital-acquired infection experience delays in appropriate antibiotic therapy with standard care. We assumed this percentage decreased by 50% (to 14.4%) among patients with true-positive results and increased by 50% (to 43.1%) among patients with false-negative results using a hypothetical biomarker assay. Cost of testing was set at $110/d. MEASUREMENTS AND MAIN RESULTS: In the base-case analysis, among ventilated patients, daily diagnostic testing starting on admission reduced inpatient mortality from 12.3 to 11.9% and increased mean costs by $1,640 per patient, resulting in an incremental cost-effectiveness ratio of $21,389 per life-year saved. Among nonventilated patients, inpatient mortality decreased from 7.3 to 7.1% and costs increased by $1,381 with diagnostic testing. The resulting incremental cost-effectiveness ratio was $42,325 per life-year saved. Threshold analyses revealed the probabilities of developing hospital-acquired infection in ventilated and nonventilated patients could be as low as 8.4 and 9.8%, respectively, to maintain incremental cost-effectiveness ratios less than $50,000 per life-year saved. CONCLUSIONS: Development and use of serial diagnostic testing that reduces the proportion of patients with delays in appropriate antibiotic therapy for hospital-acquired infections could reduce inpatient mortality. The model presented here offers a cost-effectiveness framework for future test development.