2 resultados para Four-day week.

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digestibility and passage of an experimental diet was used to compare the digestive physiology of two Propithecus species: P. verreauxi and P. tattersalli. Though both animals have a similar feeding ecology, the captive status of P. verreauxi is considered more stable than that of P. tattersalli. The test diet included a local tree species, Rhus copallina, at 15% of dry matter intake (DMI) and Mazuri Leafeater Primate Diet at 85% of DMI. The chemical composition of the diet (dry matter basis) was 25% crude protein, 34% neutral detergent fiber (NDF), and 22% acid detergent fiber (ADF) with a gross energy of 4.52 kcal/g. After a 6 week acclimation to the experimental diet, animals were placed in research caging. After a 7 day adjustment period, animals were dosed with chromium mordant and Co-EDTA as markers for digesta passage and all feed refusals and feces were collected at timed intervals for 7 days. Digestibility values, similar for both species, were approximately 65% for dry matter, crude protein, and energy, and 40% and 35% respectively, for NDF and ADF. Transit times (17-18.5 hr) and mean retention times (31-34 hr) were not significantly different between species, and there was no difference between the chromium mordant and Co-EDTA. Serum values for glucose, urea, and non-esterified fatty acids (NEFA) were obtained during four different time periods to monitor nutritional status. While there was no change in serum glucose, serum urea increased over time. The NEFAs increased across all four time periods for P. verreauxi and increased for the first three periods then decreased in the last period for P. tattersalli. Results obtained indicate no difference in digestibility nor digesta passage between species, and that both Propithecus species were similar to other post-gastric folivores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian® by ViewRay®). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE® with optical-CT readout.

Methods: A detailed study of PRESAGE® dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) by optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr.

Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%.

Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.