4 resultados para Formation Mechanisms

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though the etiology of chronic rejection (CR) is multifactorial, donor specific antibody (DSA) is considered to have a causal effect on CR development. Currently the antibody-mediated mechanisms during CR are poorly understood due to lack of proper animal models and tools. In a clinical setting, we previously demonstrated that induction therapy by lymphocyte depletion, using alemtuzumab (anti-human CD52), is associated with an increased incidence of serum alloantibody, C4d deposition and antibody-mediated rejection in human patients. In this study, the effects of T cell depletion in the development of antibody-mediated rejection were examined using human CD52 transgenic (CD52Tg) mice treated with alemtuzumab. Fully mismatched cardiac allografts were transplanted into alemtuzumab treated CD52Tg mice and showed no acute rejection while untreated recipients acutely rejected their grafts. However, approximately half of long-term recipients showed increased degree of vasculopathy, fibrosis and perivascular C3d depositions at posttransplant day 100. The development of CR correlated with DSA and C3d deposition in the graft. Using novel tracking tools to monitor donor-specific B cells, alloreactive B cells were shown to increase in accordance with DSA detection. The current animal model could provide a means of testing strategies to understand mechanisms and developing therapeutic approaches to prevent chronic rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Episodic memory formation is shaped by expectation. Events that generate expectations have the capacity to influence memory. Additionally, whether subsequent events meet or violate expectations has consequences for memory. However, clarification is still required to illuminate the circumstances and direction of memory modulation. In the brain, the mechanisms by which expectation modulates memory formation also require consideration. The dopamine system has been implicated in signaling events associated with different states of expectancy; it has also been shown to modulate episodic memory formation in the hippocampus. Thus, the studies included in this dissertation utilized both functional magnetic resonance imaging (fMRI) and behavioral testing to examine when and how the dopaminergic system supports the modulation of memory by expectation. The work aimed to characterize the activation of dopaminergic circuitry in response to cues that generate expectancy, during periods of anticipation, and in response to outcomes that resolve expectancy. The studies also examined how each of these event types influenced episodic memory formation. The present findings demonstrated that novelty and expectancy violation both drive dopaminergic circuitry capable of contributing to memory formation. Consistent with elevated dopaminergic midbrain and hippocampus activation for each, expected versus expectancy violating novelty did not differentially affect memory success. We also showed that high curiosity expectancy states drive memory formation. This was supported by activation in dopaminergic circuitry that was greater for subsequently remembered information only in the high curiosity state. Finally, we showed that cues that generate high expected reward value versus high reward uncertainty differentially modulate memory formation during reward anticipation. This behavioral result was consistent with distinct temporal profiles of dopaminergic action having differential downstream effects on episodic memory formation. Integrating the present studies with previous research suggests that dopaminergic circuitry signals events that are unpredicted, whether cuing or resolving expectations. It also suggests that contextual differences change the contribution of the dopaminergic system during anticipation, depending on the nature of the expectation. And finally, this work is consistent with a model in which dopamine elevation in response to expectancy events positively modulates episodic memory formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.