9 resultados para Forest thinning

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six species of prosimians inhabiting the montane rain forest of the Ranomafana National Park located in southeastern Madagascar were captured, weighed, and measured during the months of May or June of 1987, 1988, and 1989. There were no significant differences in body weights and measurements between male and femaleEulemur rubriventer (red-bellied lemur) orEulemur fulvus rufus (red-fronted lemur). Adult femalePropithecus diadema edwardsi (Milne Edward's sifaka) were heavier than males but the difference was not significant. A fewAvahi laniger laniger (woolly lemur),Hapalemur aureus (golden bamboo lemur) andH. g. griseus (gentle bamboo lemur) also were captured and measured. Body weights of the same individual adultP. d. edwardsi changed over the three years, suggesting variation in food availability. Although there was no difference in body weight among adult males of two groups ofP. d. edwardsi, one male in each group had a testicular volume four times larger than that of other males, even though these measurements were taken five months after the breeding season. These data suggest that only one adult male mates in each group. Testicular size of the polygynousE. f. rufus males was significantly larger than that of the monogamousE. rubriventer. © 1992 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new approach to understanding the role of fuelwood in the rural household economy by applying insights from travel cost modeling to author-compiled household survey data and meso-scale environmental statistics from Ruteng Park in Flores, Indonesia. We characterize Manggarai farming households' fuelwood collection trips as inputs into household production of the utility yielding service of cooking and heating. The number of trips taken by households depends on the shadow price of fuelwood collection or the travel cost, which is endogenous. Econometric analyses using truncated negative binomial regression models and correcting for endogeneity show that the Manggarai are 'economically rational' about fuelwood collection and access to the forests for fuelwood makes substantial contributions to household welfare. Increasing cost of forest access, wealth, use of alternative fuels, ownership of kerosene stoves, trees on farm, park staff activity, primary schools and roads, and overall development could all reduce dependence on collecting fuelwood from forests. © 2004 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Bacterial colonization of the fetal membranes and its role in pathogenesis of membrane rupture is poorly understood. Prior retrospective work revealed chorion layer thinning in preterm premature rupture of membranes (PPROM) subjects. Our objective was to prospectively examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects. STUDY DESIGN: Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects. Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemistry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using Student's t-test, linear mixed effect model, and Poisson regression model (SAS Cary, NC). RESULTS: In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site (147.2 vs. 253.7 µm, p<0.0001). Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined, regardless of site sampled [PPROM(114.9) vs. PTL(246.0) vs. PTNL(200.8) vs. TL(217.9) vs. TNL(246.5)]. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection [PPROM(31) vs. PTL(9) vs. PTNL(7) vs. TL(7) vs. TNL(6)]. Among all subjects at both sites, bacterial counts were inversely correlated with chorion thinning, even excluding histologic chorioamnionitis (p<0.0001 and p = 0.05). CONCLUSIONS: Fetal chorion was uniformly thinner at rupture site compared to distant sites. In PPROM fetal chorion, we demonstrated pronounced global thinning. Although cause or consequence is uncertain, bacterial presence is greatest and inversely correlated with chorion thinning among PPROM subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claims of injustice in global forest governance are prolific: assertions of colonization, marginalization and disenfranchisement of forest-dependent people, and privatization of common resources are some of the most severe allegations of injustice resulting from globally-driven forest conservation initiatives. At its core, the debate over the future of the world's forests is fraught with ethical concerns. Policy makers are not only deciding how forests should be governed, but also who will be winners, losers, and who should have a voice in the decision-making processes. For 30 years, policy makers have sought to redress the concerns of the world's 1.6 billion forest-dependent poor by introducing rights-based and participatory approaches to conservation. Despite these efforts, however, claims of injustice persist. This research examines possible explanations for continued claims of injustice by asking: What are the barriers to delivering justice to forest-dependent communities? Using data collected through surveys, interviews, and collaborative event ethnography in Laos and at the Tenth Conference of Parties to the Convention on Biological Diversity, this dissertation examines the pursuit of justice in global forest governance across multiple scales of governance. The findings reveal that particular conceptualizations of justice have become a central part of the metanormative fabric of global environmental governance, inhibiting institutional evolution and therewith perpetuating the justice gap in global forest governance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention, partly because of evidence that this can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of management and deforestation regimes, silvicultural species, relative prices, and discount rates. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking advantage of a cluster of unmanaged stands (85-130year-old hardwoods) and managed plantations (17-20year-old loblolly pine) in coastal and Piedmont areas of North Carolina, tree water use, cavitation resistance, whole-tree hydraulic (Ktree) and stomatal (Gs) conductances were measured in four sites covering representative forests growing in the region. We also used a hydraulic model to predict the resilience of those sites to extreme soil drying. Our objectives were to determine: (1) if Ktree and stomatal regulation in response to atmospheric and soil droughts differ between species and sites; (2) how ecosystem type, through tree water use, resistance to cavitation and rooting profiles, affects the water uptake limit that can be reached under drought; and (3) the influence of stand species composition on critical transpiration that sets a functional water uptake limit under drought conditions. The results show that across sites, water stress affected the coordination between Ktree and Gs. As soil water content dropped below 20% relative extractable water, Ktree declined faster and thus explained the decrease in Gs and in its sensitivity to vapor pressure deficit. Compared to branches, the capability of roots to resist high xylem tension has a great impact on tree-level water use and ultimately had important implications for pine plantations resistance to future summer droughts. Model simulations revealed that the decline in Ktree due to xylem cavitation aggravated the effects of soil drying on tree transpiration. The critical transpiration rate (Ecrit), which corresponds to the maximum rate at which transpiration begins to level off to prevent irreversible hydraulic failure, was higher in managed forest plantations than in their unmanaged counterparts. However, even with this higher Ecrit, the pine plantations operated very close to their critical leaf water potentials (i.e. to their permissible water potentials without total hydraulic failure), suggesting that intensively managed plantations are more drought-sensitive and can withstand less severe drought than natural forests.