3 resultados para Forces de compression

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of telescoping is proposed that assumes no systematic errors in dating. Rather, the overestimation of recent occurrences of events is based on the combination of three factors: (1) Retention is greater for recent events; (2) errors in dating, though unbiased, increase linearly with the time since the dated event; and (3) intrusions often occur from events outside the period being asked about, but such intrusions do not come from events that have not yet occurred. In Experiment 1, we found that recall for colloquia fell markedly over a 2-year interval, the magnitude of errors in psychologists' dating of the colloquia increased at a rate of .4 days per day of delay, and the direction of the dating error was toward the middle of the interval. In Experiment 2, the model used the retention function and dating errors from the first study to predict the distribution of the actual dates of colloquia recalled as being within a 5-month period. In Experiment 3, the findings of the first study were replicated with colloquia given by, instead of for, the subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a theoretical framework for predicting the protocol dependence of the jamming transition for frictionless spherical particles that interact via repulsive contact forces. We study isostatic jammed disk packings obtained via two protocols: isotropic compression and simple shear. We show that for frictionless systems, all jammed packings can be obtained via either protocol. However, the probability to obtain a particular jammed packing depends on the packing-generation protocol. We predict the average shear strain required to jam initially unjammed isotropically compressed packings from the density of jammed packings, shape of their basins of attraction, and path traversed in configuration space. We compare our predictions to simulations of shear strain-induced jamming and find quantitative agreement. We also show that the packing fraction range, over which shear strain-induced jamming occurs, tends to zero in the large system limit for frictionless packings with overdamped dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕ_{m} above which P persists over many cycles; below ϕ_{m}, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.