4 resultados para Force balance system
em Duke University
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions.
Resumo:
We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
© 2015. American Geophysical Union. All Rights Reserved.The role of surface and advective heat fluxes on buoyancy-driven circulation was examined within a tropical coral reef system. Measurements of local meteorological conditions as well as water temperature and velocity were made at six lagoon locations for 2 months during the austral summer. We found that temperature rather than salinity dominated buoyancy in this system. The data were used to calculate diurnally phase-averaged thermal balances. A one-dimensional momentum balance developed for a portion of the lagoon indicates that the diurnal heating pattern and consistent spatial gradients in surface heat fluxes create a baroclinic pressure gradient that is dynamically important in driving the observed circulation. The baroclinic and barotropic pressure gradients make up 90% of the momentum budget in part of the system; thus, when the baroclinic pressure gradient decreases 20% during the day due to changes in temperature gradient, this substantially changes the circulation, with different flow patterns occurring during night and day. Thermal balances computed across the entire lagoon show that the spatial heating patterns and resulting buoyancy-driven circulation are important in maintaining a persistent advective export of heat from the lagoon and for enhancing ocean-lagoon exchange.