5 resultados para Fluorescence polarization immunoassay (FPIA)
em Duke University
Resumo:
The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.
Resumo:
Abstract
Listeria monocytogenes is a gram-positive soil saprophytic bacterium that is capable of causing fatal infection in humans. The main virulence regulator PrfA, a member of the Crp/FNR family of transcriptional regulators, activates the expression of essential proteins required for host cell invasion and cell-to-cell spread. The mechanism of PrfA activation and the identity of its small molecule coactivator have remained a mystery for more than 20 years, but it is hypothesized that PrfA shares mechanistic similarity to the E. coli cAMP binding protein, Crp. Crp activates gene expression by binding cAMP, increasing the DNA binding affinity of the protein and causing a significant DNA bend that facilitates RNA polymerase binding and downstream gene activation. Our data suggests PrfA activates virulence protein expression through a mechanism distinct from the canonical Crp activation mechanism that involves a combination of cysteine residue reduction and glutathione (GSH) binding.
Listeria lacking glutathione synthase (ΔgshF) is avirulent in mice; however virulence is rescued when the bacterium expresses the constitutively active PrfA mutant G145S. Interestingly, Listeria expressing a PrfA mutant in which its four cysteines are mutated to alanine (Quad PrfA), demonstrate a 30-fold decrease in virulence. The Quad and ΔgshF double mutant strains are avirulent. DNA-binding affinity, measured through fluorescence polarization assays, indicate reduction of the cysteine side chains is sufficient to allow PrfA to binds its physiological promoters Phly and PactA with low nanomolar affinity. Oxidized PrfA binds the promoters poorly.
Unexpectedly, Quad also binds promoter DNA with nanomolar affinity, suggesting that the cysteines play a role in transcription efficiency in addition to DNA binding. Both PrfA and Quad bind GSH at physiologically relevant and comparable affinities, however GSH did not affect DNA binding in either case. Thermal denaturation assays suggest that Quad and wild-type PrfA differ structurally upon binding GSH, which supports the in vivo difference in infection between the regulator and its mutant.
Structures of PrfA in complex with cognate DNA, determined through X-ray crystallography, further support the disparity between PrfA and Crp activation mechanisms as two structures of reduced PrfA bound to Phly (PrfA-Phly30 and PrfA-Phly24) suggest the DNA adopts a less bent DNA conformation when compared to Crp-cAMP- DNA. The structure of Quad-Phly30 confirms the DNA-binding data as the protein-DNA complex adopts the same overall conformation as PrfA-Phly.
From these results, we hypothesize a two-step activation mechanism wherein PrfA, oxidized upon cell entry and unable to bind DNA, is reduced upon its intracellular release and binds DNA, causing a slight bend in the promoter and small increase in transcription of PrfA-regulated genes. The structures of PrfA-Phly30 and PrfA-Phly24 likely visualize this intermediate complex. Increasing concentrations of GSH shift the protein to a (PrfA-GSH)-DNA complex which is fully active transcriptionally and is hypothesized to resemble closely the transcriptionally active structure of the cAMP-(Crp)-DNA complex. Thermal denaturation results suggest Quad PrfA is deficient in this second step, which explains the decrease in virulence and implicates the cysteine residues as critical for transcription efficiency. Further structural and biochemical studies are on-going to clarify this mechanism of activation.
Resumo:
The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.
Resumo:
Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.
Resumo:
This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.