8 resultados para Flashing traffic signals.

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During heart development, a subpopulation of cells in the heart field maintains cardiac potential over several days of development and forms the myocardium and smooth muscle of the arterial pole. Using clonal and explant culture experiments, we show that these cells are a stem cell population that can differentiate into myocardium, smooth muscle and endothelial cells. The multipotent stem cells proliferate or differentiate into different cardiovascular cell fates through activation or inhibition of FGF and BMP signaling pathways. BMP promoted myocardial differentiation but not proliferation. FGF signaling promoted proliferation and induced smooth muscle differentiation, but inhibited myocardial differentiation. Blocking the Ras/Erk intracellular pathway promoted myocardial differentiation, while the PLCgamma and PI3K pathways regulated proliferation. In vivo, inhibition of both pathways resulted in predictable arterial pole defects. These studies suggest that myocardial differentiation of arterial pole progenitors requires BMP signaling combined with downregulation of the FGF/Ras/Erk pathway. The FGF pathway maintains the pool of proliferating stem cells and later promotes smooth muscle differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel data-delivery method for delay-sensitive traffic that significantly reduces the energy consumption in wireless sensor networks without reducing the number of packets that meet end-to-end real-time deadlines. The proposed method, referred to as SensiQoS, leverages the spatial and temporal correlation between the data generated by events in a sensor network and realizes energy savings through application-specific in-network aggregation of the data. SensiQoS maximizes energy savings by adaptively waiting for packets from upstream nodes to perform in-network processing without missing the real-time deadline for the data packets. SensiQoS is a distributed packet scheduling scheme, where nodes make localized decisions on when to schedule a packet for transmission to meet its end-to-end real-time deadline and to which neighbor they should forward the packet to save energy. We also present a localized algorithm for nodes to adapt to network traffic to maximize energy savings in the network. Simulation results show that SensiQoS improves the energy savings in sensor networks where events are sensed by multiple nodes, and spatial and/or temporal correlation exists among the data packets. Energy savings due to SensiQoS increase with increase in the density of the sensor nodes and the size of the sensed events. © 2010 Harshavardhan Sabbineni and Krishnendu Chakrabarty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-arrestins are versatile adapter proteins that form complexes with most G-protein-coupled receptors (GPCRs) following agonist binding and phosphorylation of receptors by G-protein-coupled receptor kinases (GRKs). They play a central role in the interrelated processes of homologous desensitization and GPCR sequestration, which lead to the termination of G protein activation. β-arrestin binding to GPCRs both uncouples receptors from heterotrimeric G proteins and targets them to clathrincoated pits for endocytosis. Recent data suggest that β-arrestins also function as GPCR signal transducers. They can form complexes with several signaling proteins, including Src family tyrosine kinases and components of the ERK1/2 and JNK3 MAP kinase cascades. By recruiting these kinases to agonist-occupied GPCRs, β-arrestins confer distinct signaling activities upon the receptor. β-arrestin-Src complexes have been proposed to modulate GPCR endocytosis, to trigger ERK1/2 activation and to mediate neutrophil degranulation. By acting as scaffolds for the ERK1/2 and JNK3 cascades, β-arrestins both facilitate GPCR-stimulated MAP kinase activation and target active MAP kinases to specific locations within the cell. Thus, their binding to GPCRs might initiate a second wave of signaling and represent a novel mechanism of GPCR signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Road traffic injuries (RTIs) are a growing but neglected global health crisis, requiring effective prevention to promote sustainable safety. Low- and middle-income countries (LMICs) share a disproportionately high burden with 90% of the world's road traffic deaths, and where RTIs are escalating due to rapid urbanization and motorization. Although several studies have assessed the effectiveness of a specific intervention, no systematic reviews have been conducted summarizing the effectiveness of RTI prevention initiatives specifically performed in LMIC settings; this study will help fill this gap. METHODS: In accordance with PRISMA guidelines we searched the electronic databases MEDLINE, EMBASE, Scopus, Web of Science, TRID, Lilacs, Scielo and Global Health. Articles were eligible if they considered RTI prevention in LMICs by evaluating a prevention-related intervention with outcome measures of crash, RTI, or death. In addition, a reference and citation analysis was conducted as well as a data quality assessment. A qualitative metasummary approach was used for data analysis and effect sizes were calculated to quantify the magnitude of emerging themes. RESULTS: Of the 8560 articles from the literature search, 18 articles from 11 LMICs fit the eligibility and inclusion criteria. Of these studies, four were from Sub-Saharan Africa, ten from Latin America and the Caribbean, one from the Middle East, and three from Asia. Half of the studies focused specifically on legislation, while the others focused on speed control measures, educational interventions, enforcement, road improvement, community programs, or a multifaceted intervention. CONCLUSION: Legislation was the most common intervention evaluated with the best outcomes when combined with strong enforcement initiatives or as part of a multifaceted approach. Because speed control is crucial to crash and injury prevention, road improvement interventions in LMIC settings should carefully consider how the impact of improvements will affect speed and traffic flow. Further road traffic injury prevention interventions should be performed in LMICs with patient-centered outcomes in order to guide injury prevention in these complex settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perceive a stable visual world even though saccades often move our retinas. One way the brain may achieve a stable visual percept is through predictive remapping of visual receptive fields: just before a saccade, the receptive field of many neurons moves from its current location ("current receptive field") to the location it is expected to occupy after the saccade ("future receptive field"). Goldberg and colleagues found such remapping in cortical areas, e.g. in the frontal eye field (FEF), as well as in the intermediate layers of the superior colliculus (SC). In the present study we investigated the source of the SC's remapped visual signals. Do some of them come from the FEF? We identified FEF neurons that project to the SC using antidromic stimulation. For neurons with a visual response, we tested whether the receptive field shifted just prior to making a saccade. Saccadic amplitudes were chosen to be as small as possible while clearly separating the current and future receptive fields; they ranged from 5-30 deg. in amplitude and were directed contraversively. The saccadic target was a small red spot. We probed visual responsiveness at the current and future receptive field locations using a white spot flashed at various times before or after the saccade. Predictive remapping was indicated by a visual response to a probe flashed in the future receptive field just before the saccade began. We found that many FEF neurons projecting to the SC exhibited predictive remapping. Moreover, the remapping was as fast and strong as any previously reported for FEF or SC. It is clear, therefore, that remapped visual signals are sent from FEF to SC, providing direct evidence that the FEF is one source of the SC's remapped visual signals. Because remapping requires information about an imminent saccade, we hypothesize that remapping in FEF depends on corollary discharge signals such as those ascending from the SC through MD thalamus (Sommer and Wurtz 2002).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals communicating via scent often deposit composite signals that incorporate odorants from multiple sources; however, the function of mixing chemical signals remains understudied. We tested both a 'multiple-messages' and a 'fixative' hypothesis of composite olfactory signalling, which, respectively, posit that mixing scents functions to increase information content or prolong signal longevity. Our subjects-adult, male ring-tailed lemurs (Lemur catta)-have a complex scent-marking repertoire, involving volatile antebrachial (A) secretions, deposited pure or after being mixed with a squalene-rich paste exuded from brachial (B) glands. Using behavioural bioassays, we examined recipient responses to odorants collected from conspecific strangers. We concurrently presented pure A, pure B and mixed A + B secretions, in fresh or decayed conditions. Lemurs preferentially responded to mixed over pure secretions, their interest increasing and shifting over time, from sniffing and countermarking fresh mixtures, to licking and countermarking decayed mixtures. Substituting synthetic squalene (S)-a well-known fixative-for B secretions did not replicate prior results: B secretions, which contain additional chemicals that probably encode salient information, were preferred over pure S. Whereas support for the 'multiple-messages' hypothesis underscores the unique contribution from each of an animal's various secretions, support for the 'fixative' hypothesis highlights the synergistic benefits of composite signals.