7 resultados para First year
em Duke University
Resumo:
BACKGROUND: Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. METHODS AND PRINCIPAL FINDINGS: The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. CONCLUSIONS: Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks.
Resumo:
Infants' speech perception abilities change through the first year of life, from broad sensitivity to a wide range of speech contrasts to becoming more finely attuned to their native language. What remains unclear, however, is how this perceptual change relates to brain responses to native language contrasts in terms of the functional specialization of the left and right hemispheres. Here, to elucidate the developmental changes in functional lateralization accompanying this perceptual change, we conducted two experiments on Japanese infants using Japanese lexical pitch-accent, which changes word meanings with the pitch pattern within words. In the first behavioral experiment, using visual habituation, we confirmed that infants at both 4 and 10 months have sensitivities to the lexical pitch-accent pattern change embedded in disyllabic words. In the second experiment, near-infrared spectroscopy was used to measure cortical hemodynamic responses in the left and right hemispheres to the same lexical pitch-accent pattern changes and their pure tone counterparts. We found that brain responses to the pitch change within words differed between 4- and 10-month-old infants in terms of functional lateralization: Left hemisphere dominance for the perception of the pitch change embedded in words was seen only in the 10-month-olds. These results suggest that the perceptual change in Japanese lexical pitch-accent may be related to a shift in functional lateralization from bilateral to left hemisphere dominance.
Resumo:
It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.
In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.
In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
PURPOSE: The readiness assurance process (RAP) of team-based learning (TBL) is an important element that ensures that students come prepared to learn. However, the RAP can use a significant amount of class time which could otherwise be used for application exercises. The authors administered the TBL-associated RAP in class or individual readiness assurance tests (iRATs) at home to compare medical student performance and learning preference for physiology content. METHODS: Using cross-over study design, the first year medical student TBL teams were divided into two groups. One group was administered iRATs and group readiness assurance tests (gRATs) consisting of physiology questions during scheduled class time. The other group was administered the same iRAT questions at home, and did not complete a gRAT. To compare effectiveness of the two administration methods, both groups completed the same 12-question physiology assessment during dedicated class time. Four weeks later, the entire process was repeated, with each group administered the RAP using the opposite method. RESULTS: The performance on the physiology assessment after at-home administration of the iRAT was equivalent to performance after traditional in-class administration of the RAP. In addition, a majority of students preferred the at-home method of administration and reported that the at-home method was more effective in helping them learn course content. CONCLUSION: The at-home administration of the iRAT proved effective. The at-home administration method is a promising alternative to conventional iRATs and gRATs with the goal of preserving valuable in-class time for TBL application exercises.
Resumo:
Given the illness and deaths caused by respiratory syncytial virus (RSV) infection during the first year of life, preventing infant RSV infections through maternal vaccination is intriguing. However, little is known about the extent and maternal effects of RSV infection during pregnancy. We describe 3 cases of maternal RSV infection diagnosed at a US center during winter 2014. Case-patient 1 (26 years old, week 33 of gestation) received a diagnosis of RSV infection and required mechanical ventilation. Case-patient 2 (27 years old, week 34 of gestation) received a diagnosis of infection with influenza A(H1N1) virus and RSV and required mechanical ventilation. Case-patient 3 (21 years old, week 32 of gestation) received a diagnosis of group A streptococcus pharyngitis and RSV infection and was monitored as an outpatient. Clarifying the effects of maternal RSV infection could yield valuable insights into potential maternal and fetal benefits of an effective RSV vaccination program.