5 resultados para Filmic approach methods
em Duke University
Resumo:
Predicting from first-principles calculations whether mixed metallic elements phase-separate or form ordered structures is a major challenge of current materials research. It can be partially addressed in cases where experiments suggest the underlying lattice is conserved, using cluster expansion (CE) and a variety of exhaustive evaluation or genetic search algorithms. Evolutionary algorithms have been recently introduced to search for stable off-lattice structures at fixed mixture compositions. The general off-lattice problem is still unsolved. We present an integrated approach of CE and high-throughput ab initio calculations (HT) applicable to the full range of compositions in binary systems where the constituent elements or the intermediate ordered structures have different lattice types. The HT method replaces the search algorithms by direct calculation of a moderate number of naturally occurring prototypes representing all crystal systems and guides CE calculations of derivative structures. This synergy achieves the precision of the CE and the guiding strengths of the HT. Its application to poorly characterized binary Hf systems, believed to be phase-separating, defines three classes of alloys where CE and HT complement each other to uncover new ordered structures.
Resumo:
We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.
Resumo:
BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.
Resumo:
While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.
Resumo:
We propose a novel unsupervised approach for linking records across arbitrarily many files, while simultaneously detecting duplicate records within files. Our key innovation is to represent the pattern of links between records as a {\em bipartite} graph, in which records are directly linked to latent true individuals, and only indirectly linked to other records. This flexible new representation of the linkage structure naturally allows us to estimate the attributes of the unique observable people in the population, calculate $k$-way posterior probabilities of matches across records, and propagate the uncertainty of record linkage into later analyses. Our linkage structure lends itself to an efficient, linear-time, hybrid Markov chain Monte Carlo algorithm, which overcomes many obstacles encountered by previously proposed methods of record linkage, despite the high dimensional parameter space. We assess our results on real and simulated data.