3 resultados para Fertilization (Biology)

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (IC). The product of such changes is a higher gross primary production and higher net primary production (NPP). However, fertilization may also alter carbohydrate partitioning from below- to aboveground, increasing aboveground NPP (ANPP). We analyzed effects of long-term N-fertilization on NPP, and that of long-term carbon storing organs (NPPS) in a Pinus sylvestris forest on sandy soil, a wide-ranging forest type in the boreal region. We based our analyses on a combination of destructive harvesting, consecutive mensuration, and optical measurements of canopy openness. After eight-year fertilization with a total of 70gNm-2, ANPP was 27±7% higher in the fertilized (F) relative to the reference (R) stand, but although L increased relative to its pre-fertilization values, IC was not greater than in R. On the seventh year after the treatment initiation, the increase of ANPP was matched by the decrease of belowground NPP (78 vs. 92gCm-2yr-1; ~17% of NPP) and, given the similarity of IC, suggests that the main effect of N-fertilization was changed carbon partitioning rather than increased canopy photosynthesis. Annual NPPS increased linearly with growing season temperature (T) in both treatments, with an upward shift of 70.2gCm-2yr-1 by fertilization, which also caused greater amount of unexplained variation (r2=0.53 in R, 0.21 in F). Residuals of the NPPS-T relationship of F were related to growing season precipitation (P, r2=0.48), indicating that T constrains productivity at this site regardless of fertility, while P is important in determining productivity where N-limitation is alleviated. We estimated that, in a growing season average T (11.5±1.0°C; 33-year-mean), NPPS response to N-fertilization will be nullified with P 31mm less than the mean (325±85mm), and would double with P 109mm greater than the mean. These results suggest that inter-annual variation in climate, particularly in P, may help explaining the reported large variability in growth responses to fertilization of pine stands on sandy soils. Furthermore, forest management of long-rotation systems, such as those of boreal and northern temperate forests, must consider the efficiency of fertilization in terms of wood production in the context of changes in climate predicted for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.